West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).
Google Scholar
McNamara, J. M., Dall, S. R. X., Hammerstein, P. & Leimar, O. Detection vs. selection: Integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19, 1267–1276. https://doi.org/10.1111/ele.12663 (2016).
Google Scholar
Goeppner, S. R., Roberts, M. E., Beaty, L. E. & Luttbeg, B. Freshwater snail responses to fish predation integrate phenotypic plasticity and local adaptation. Aquat. Ecol. 54, 309–322. https://doi.org/10.1007/s10452-019-09744-x (2020).
Google Scholar
Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63. https://doi.org/10.1038/43425 (1999).
Google Scholar
Ehrenreich, I. M. & Pfennig, D. W. Genetic assimilation: A review of its potential proximate causes and evolutionary consequences. Ann. Botany 117, 769–779. https://doi.org/10.1093/aob/mcv130 (2016).
Google Scholar
Walsh, M. R., Whittington, D. & Funkhouser, C. Thermal transgenerational plasticity in natural populations of Daphnia. Integr. Comp. Biol. 54, 822–829. https://doi.org/10.1093/icb/icu078 (2014).
Google Scholar
Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190454. https://doi.org/10.1098/rstb.2019.0454 (2020).
Google Scholar
Uller, T., Nakagawa, S. & English, S. Weak evidence for anticipatory parental effects in plants and animals. J. Evolut. Biol. 26, 2161–2170. https://doi.org/10.1111/jeb.12212 (2013).
Google Scholar
Radersma, R., Hegg, A., Noble, D. W. A. & Uller, T. Timing of maternal exposure to toxic cyanobacteria and offspring fitness in Daphnia magna: implications for the evolution of anticipatory maternal effects. Ecol. Evolut. 8, 12727–12736. https://doi.org/10.1002/ece3.4700 (2018).
Google Scholar
Sha, Y. C. & Hansson, L. A. Ancestral environment determines the current reaction to ultraviolet radiation in Daphnia magna. Evolution 76, 1821–1835. https://doi.org/10.1111/evo.14555 (2022).
Google Scholar
Yin, J. J., Zhou, M., Lin, Z. R., Li, Q. S. Q. & Zhang, Y. Y. Transgenerational effects benefit offspring across diverse environments: A meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986. https://doi.org/10.1111/ele.13373 (2019).
Google Scholar
Pigliucci, M. Beyond Nature and Nurture (Johns Hopkins University Press, 2001).
Innes-Gold, A. A., Zuczek, N. Y. & Touchon, J. C. Right phenotype, wrong place: Predator-induced plasticity is costly in a mismatched environment. Proc. R. Soc. B-Biol. Sci. 286, 20192347. https://doi.org/10.1098/rspb.2019.2347 (2019).
Google Scholar
Haaland, T. R., Wright, J. & Ratikainen, I. I. Bet-hedging across generations can affect the evolution of variance-sensitive strategies within generations. Proc. R. Soc. B Biol. Sci. 286, 20192070. https://doi.org/10.1098/rspb.2019.2070 (2019).
Google Scholar
Starrfelt, J. & Kokko, H. Bet-hedging—A triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755. https://doi.org/10.1111/j.1469-185X.2012.00225.x (2012).
Google Scholar
Childs, D. Z., Metcalf, C. J. E. & Rees, M. Evolutionary bet-hedging in the real world: Empirical evidence and challenges revealed by plants. Proc. R. Soc. B Biol. Sci. 277, 3055–3064. https://doi.org/10.1098/rspb.2010.0707 (2010).
Google Scholar
Kain, J. S. et al. Variability in thermal and phototactic preferences in Drosophila may reflect an adaptive bet-hedging strategy. Evolution 69, 3171–3185. https://doi.org/10.1111/evo.12813 (2015).
Google Scholar
Pinceel, T. et al. An empirical confirmation of diversified bet hedging as a survival strategy in unpredictably varying environments. Ecology https://doi.org/10.1002/ecy.3496 (2021).
Google Scholar
Lind, M. I. et al. Environmental variation mediates the evolution of anticipatory parental effects. Evolut. Lett. 4, 371–381. https://doi.org/10.1002/evl3.177 (2020).
Google Scholar
Fawcett, T. W. & Frankenhuis, W. E. Adaptive explanations for sensitive windows in development. Front. Zool. 12, S3. https://doi.org/10.1186/1742-9994-12-s1-s3 (2015).
Google Scholar
Hoverman, J. T. & Relyea, R. A. How flexible is phenotypic plasticity? Developmental windows for trait induction and reversal. Ecology 88, 693–705. https://doi.org/10.1890/05-1697 (2007).
Google Scholar
Taborsky, B. et al. An evolutionary perspective on stress responses, damage and repair. Horm. Behav. 142, 105180. https://doi.org/10.1016/j.yhbeh.2022.105180 (2022).
Google Scholar
Kielland, O. N., Bech, C. & Einum, S. Is there plasticity in developmental instability? The effect of daily thermal fluctuations in an ectotherm. Ecol. Evolut. 7, 10567–10574. https://doi.org/10.1002/ece3.3556 (2017).
Google Scholar
Burton, T., Lakka, H. K. & Einum, S. Measuring phenotypes in fluctuating environments. Funct. Ecol. 34, 606–615. https://doi.org/10.1111/1365-2435.13501 (2020).
Google Scholar
Drake, M., Miller, N. & Todgham, A. The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet, Lottia digitalis. J. Exp. Biol. 220, 3072–3083. https://doi.org/10.1242/jeb.159020 (2017).
Google Scholar
Stocker, C. et al. The effect of temperature variability on biological responses of ectothermic animals—A meta-analysis. Ecol. Lett. https://doi.org/10.1111/ele.14511 (2024).
Google Scholar
IPCC. in Climate change 2023: Synthesis Report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change (ed Lee Core writing team, H. and Romero, J.) 35–115 (IPCC, Geneva, Switzerland, 2023).
Huebner, J. D., Young, D. L. W., Loadman, N. L., Lentz, V. J. & Wiegand, M. D. Age-dependent survival, reproduction and photorepair activity in Daphnia magna (Straus, 1820) after exposure to artificial ultraviolet radiation. Photochem. Photobiol. 82, 1656–1661. https://doi.org/10.1562/2006-05-03-ra-890 (2006).
Google Scholar
Fernández, C. E., Campero, M., Uvo, C. & Hansson, L.-A. Disentangling population strategies of two cladocerans adapted to different ultraviolet regimes. Ecol. Evolut. 8, 1995–2005. https://doi.org/10.1002/ece3.3792 (2018).
Google Scholar
Wolinski, L., Souza, M. S., Modenutti, B. & Balseiro, E. Effect of chronic UVR exposure on zooplankton molting and growth. Environ. Pollut. 267, 115448. https://doi.org/10.1016/j.envpol.2020.115448 (2020).
Google Scholar
Fischer, J. M., Fields, P. A., Pryzbylkowski, P. G., Nicolai, J. L. & Neale, P. J. Sublethal exposure to UV radiation affects respiration rates of the freshwater cladoceran Daphnia catawba. Photochem. Photobiol. 82, 547–550. https://doi.org/10.1562/2005-08-30-ra-664 (2006).
Google Scholar
Hansson, L.-A. Induced pigmentation in zooplankton: A trade-off between threats from predation and ultraviolet radiation. Proc. R. Soc. B Biol. Sci. 267, 2327–2331. https://doi.org/10.1098/rspb.2000.1287 (2000).
Google Scholar
Hansson, L.-A. & Hylander, S. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochem. Photobiol. Sci. 8, 1266–1275. https://doi.org/10.1039/b908825c (2009).
Google Scholar
Oexle, S. et al. Rapid evolution of antioxidant defence in a natural population of Daphnia magna. J. Evolut. Biol. 29, 1328–1337. https://doi.org/10.1111/jeb.12873 (2016).
Google Scholar
Rhode, S. C., Pawlowski, M. & Tollrian, R. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412, 69–72. https://doi.org/10.1038/35083567 (2001).
Google Scholar
Leach, T. H., Williamson, C. E., Theodore, N., Fischer, J. M. & Olson, M. H. The role of ultraviolet radiation in the diel vertical migration of zooplankton: An experimental test of the transparency-regulator hypothesis. J. Plankton Res. 37, 886–896. https://doi.org/10.1093/plankt/fbv061 (2015).
Google Scholar
Hansson, L. A., Hylander, S. & Sommaruga, R. Escape from UV threats in zooplankton: A cocktail of behavior and protective pigmentation. Ecology 88, 1932–1939. https://doi.org/10.1890/06-2038.1 (2007).
Google Scholar
Lee, M. & Hansson, L.-A. Daphnia magna trade-off safety from UV radiation for food. Ecol. Evolut. 11, 18026–18031. https://doi.org/10.1002/ece3.8399 (2021).
Google Scholar
Walsh, M. R. et al. in Life Histories: Volume 5 (eds Martin Thiel & Gary A. Wellborn) (Oxford University Press, 2018).
Gustafsson, S., Rengefors, K. & Hansson, L. A. Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86, 2561–2567. https://doi.org/10.1890/04-1710 (2005).
Google Scholar
Coakley, C. M., Nestoros, E. & Little, T. J. Testing hypotheses for maternal effects in Daphnia magna. J. Evolut. Biol. 31, 211–216. https://doi.org/10.1111/jeb.13206 (2018).
Google Scholar
Zagarese, H. E., Cravero, W., Gonzalez, P. & Pedrozo, F. Copepod mortality induced by fluctuating levels of natural ultraviolet radiation simulating vertical water mixing. Limnol. Oceanogr. 43, 169–174. https://doi.org/10.4319/lo.1998.43.1.0169 (1998).
Google Scholar
Stábile, F., Brönmark, C., Hansson, L.-A. & Lee, M. Fitness cost from fluctuating ultraviolet radiation in Daphnia magna. Biol. Lett. https://doi.org/10.1098/rsbl.2021.0261 (2021).
Google Scholar
Miner, B. E., Kulling, P. M., Beer, K. D. & Kerr, B. Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature. Mol. Ecol. 24, 6177–6187. https://doi.org/10.1111/mec.13460 (2015).
Google Scholar
Galloway, L. & Etterson, J. Transgenerational plasticity is adaptive in the wild. Science 318, 1134–1136. https://doi.org/10.1126/science.1148766 (2007).
Google Scholar
Oliveira, C. Y. B. et al. A multidisciplinary review of Tetradesmus obliquus: A microalga suitable for large-scale biomass production and emerging environmental applications. Rev. Aquacult. 13, 1594–1618. https://doi.org/10.1111/raq.12536 (2021).
Google Scholar
Klüttgen, B., Dülmer, U., Engels, M. & Ratte, H. T. ADaM, an artificial fresh-water for the culture of zooplankton. Water Res. 28, 743–746. https://doi.org/10.1016/0043-1354(94)90157-0 (1994).
Google Scholar
Williamson, C. E. & Rose, K. C. When UV meets fresh water. Science 329, 637–639 (2010).
Google Scholar
Grad, G., Williamson, C. E. & Karapelou, D. M. Zooplankton survival and reproduction responses to damaging UV radiation: A test of reciprocity and photoenzymatic repair. Limnol. Oceanogr. 46, 584–591. https://doi.org/10.4319/lo.2001.46.3.0584 (2001).
Google Scholar
Rautio, M. & Tartarotti, B. UV radiation and freshwater zooplankton: Damage, protection and recovery. Freshw. Rev. J. Freshw. Biol. Assoc. 3, 105–131 (2010).
Google Scholar
Connelly, S. J. et al. UV-stressed Daphnia pulex increase fitness through uptake of vitamin D-3. Plos One https://doi.org/10.1371/journal.pone.0131847 (2015).
Google Scholar
Harney, E., Paterson, S. & Plaistow, S. J. Offspring development and life-history variation in a water flea depends upon clone-specific integration of genetic, non-genetic and environmental cues. Funct. Ecol. 31, 1996–2007. https://doi.org/10.1111/1365-2435.12887 (2017).
Google Scholar
R Core Team. (R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, (2021).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
Therneau, T. M. A package for survival analysis in R. See https://cran.r-project.org/package=survival (2022).
Brooks, M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. https://doi.org/10.32614/RJ-2017-066 (2017).
Google Scholar
Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3 3 (2020).
Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Stoks, R., Govaert, L., Pauwels, K., Jansen, B. & De Meester, L. Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecol. Lett. 19, 180–190. https://doi.org/10.1111/ele.12551 (2016).
Google Scholar
Schwarzenberger, A., D’Hondt, S., Vyverman, W. & von Elert, E. Seasonal succession of cyanobacterial protease inhibitors and Daphnia magna genotypes in a eutrophic Swedish lake. Aquatic Sci. 75, 433–445. https://doi.org/10.1007/s00027-013-0290-y (2013).
Google Scholar
Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence—Late survival sacrificed for reproduction. Philos. Trans. R. Soc. B Biol. Sci. 332, 15–24. https://doi.org/10.1098/rstb.1991.0028 (1991).
Google Scholar
Daan, S., Deerenberg, C. & Dijkstra, C. Increased daily work precipitates natural death in the kestrel. J. Anim. Ecol. 65, 539–544. https://doi.org/10.2307/5734 (1996).
Google Scholar
Maklakov, A. A. et al. Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.0376 (2017).
Google Scholar
Stamps, J. A. & Krishnan, V. V. Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories. Am. Nat. 184, 647–657. https://doi.org/10.1086/678116 (2014).
Google Scholar
Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evolut. 17, 474–480. https://doi.org/10.1016/s0169-5347(02)02580-6 (2002).
Google Scholar
Vega, M. P. & Pizarro, R. A. Oxidative stress and defence mechanisms of the freshwater cladoceran Daphnia longispina exposed to UV radiation. J. Photochem. Photobiol. B-Biol. 54, 121–125. https://doi.org/10.1016/s1011-1344(00)00005-1 (2000).
Google Scholar
Mitchell, D. L. & Karentz, D. in Environmental UV Photobiology (eds Antony R. Young, Johan Moan, Lars Olof Björn, & Wilhelm Nultsch) 345–377 (Springer, 1993).
MacFadyen, E. J. et al. Molecular response to climate change: temperature dependence of UV-induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Global Change Biol. 10, 408–416. https://doi.org/10.1111/j.1529-8817.2003.00750.x (2004).
Google Scholar
Ramos-Jiliberto, R., Dauelsberg, P. & Zúñiga, L. R. Differential tolerance to ultraviolet-B light and photoenzymatic repair in cladocerans from a Chilean lake. Marine Freshw. Res. 55, 193–200. https://doi.org/10.1071/mf03027 (2004).
Google Scholar
Norris, J. R. et al. Evidence for climate change in the satellite cloud record. Nature 536, 72. https://doi.org/10.1038/nature18273 (2016).
Google Scholar
Ha, K. J. et al. Dynamics and characteristics of dry and moist heatwaves over East Asia. Npj Clim. Atmosph. Sci. https://doi.org/10.1038/s41612-022-00272-4 (2022).
Google Scholar
Carvalho, G. R. & Crisp, D. J. The clonal ecology of Daphnia magna (Crustacea, Cladocera) 1. Temporal changes in the clonal structure of a natural population. J. Anim. Ecol. 56, 453–468. https://doi.org/10.2307/5060 (1987).
Google Scholar
Stibor, H. & Lampert, W. Components of additive variance in life-history traits of Daphnia hyalina: Seasonal differences in the response to predator signals. Oikos 88, 129–138. https://doi.org/10.1034/j.1600-0706.2000.880115.x (2000).
Google Scholar