Close Menu
Tiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
¿Qué está de moda?

Vista previa deportiva en el campus: fútbol de bandera, fútbol, cornhole, fútbol de fantasía

agosto 20, 2025

Predicción del riesgo de cáncer utilizando el aprendizaje automático del estilo de vida y los datos genéticos

agosto 20, 2025

Predicción del riesgo de cáncer utilizando el aprendizaje automático del estilo de vida y los datos genéticos

agosto 20, 2025
Facebook X (Twitter) Instagram
Tiempo JournalTiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
Tiempo Journal
Home » Variable stressor exposure shapes fitness within and across generations
Fitness

Variable stressor exposure shapes fitness within and across generations

claudioBy claudioenero 29, 2025No hay comentarios11 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email


West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).

Book 
MATH 

Google Scholar 

McNamara, J. M., Dall, S. R. X., Hammerstein, P. & Leimar, O. Detection vs. selection: Integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19, 1267–1276. https://doi.org/10.1111/ele.12663 (2016).

Article 
PubMed 
MATH 

Google Scholar 

Goeppner, S. R., Roberts, M. E., Beaty, L. E. & Luttbeg, B. Freshwater snail responses to fish predation integrate phenotypic plasticity and local adaptation. Aquat. Ecol. 54, 309–322. https://doi.org/10.1007/s10452-019-09744-x (2020).

Article 
CAS 

Google Scholar 

Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63. https://doi.org/10.1038/43425 (1999).

Article 
ADS 
CAS 

Google Scholar 

Ehrenreich, I. M. & Pfennig, D. W. Genetic assimilation: A review of its potential proximate causes and evolutionary consequences. Ann. Botany 117, 769–779. https://doi.org/10.1093/aob/mcv130 (2016).

Article 
CAS 
MATH 

Google Scholar 

Walsh, M. R., Whittington, D. & Funkhouser, C. Thermal transgenerational plasticity in natural populations of Daphnia. Integr. Comp. Biol. 54, 822–829. https://doi.org/10.1093/icb/icu078 (2014).

Article 
PubMed 
MATH 

Google Scholar 

Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190454. https://doi.org/10.1098/rstb.2019.0454 (2020).

Article 
MATH 

Google Scholar 

Uller, T., Nakagawa, S. & English, S. Weak evidence for anticipatory parental effects in plants and animals. J. Evolut. Biol. 26, 2161–2170. https://doi.org/10.1111/jeb.12212 (2013).

Article 
CAS 
MATH 

Google Scholar 

Radersma, R., Hegg, A., Noble, D. W. A. & Uller, T. Timing of maternal exposure to toxic cyanobacteria and offspring fitness in Daphnia magna: implications for the evolution of anticipatory maternal effects. Ecol. Evolut. 8, 12727–12736. https://doi.org/10.1002/ece3.4700 (2018).

Article 

Google Scholar 

Sha, Y. C. & Hansson, L. A. Ancestral environment determines the current reaction to ultraviolet radiation in Daphnia magna. Evolution 76, 1821–1835. https://doi.org/10.1111/evo.14555 (2022).

Article 
CAS 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Yin, J. J., Zhou, M., Lin, Z. R., Li, Q. S. Q. & Zhang, Y. Y. Transgenerational effects benefit offspring across diverse environments: A meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986. https://doi.org/10.1111/ele.13373 (2019).

Article 
PubMed 

Google Scholar 

Pigliucci, M. Beyond Nature and Nurture (Johns Hopkins University Press, 2001).

Google Scholar 

Innes-Gold, A. A., Zuczek, N. Y. & Touchon, J. C. Right phenotype, wrong place: Predator-induced plasticity is costly in a mismatched environment. Proc. R. Soc. B-Biol. Sci. 286, 20192347. https://doi.org/10.1098/rspb.2019.2347 (2019).

Article 
MATH 

Google Scholar 

Haaland, T. R., Wright, J. & Ratikainen, I. I. Bet-hedging across generations can affect the evolution of variance-sensitive strategies within generations. Proc. R. Soc. B Biol. Sci. 286, 20192070. https://doi.org/10.1098/rspb.2019.2070 (2019).

Article 
MATH 

Google Scholar 

Starrfelt, J. & Kokko, H. Bet-hedging—A triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755. https://doi.org/10.1111/j.1469-185X.2012.00225.x (2012).

Article 
PubMed 
MATH 

Google Scholar 

Childs, D. Z., Metcalf, C. J. E. & Rees, M. Evolutionary bet-hedging in the real world: Empirical evidence and challenges revealed by plants. Proc. R. Soc. B Biol. Sci. 277, 3055–3064. https://doi.org/10.1098/rspb.2010.0707 (2010).

Article 
MATH 

Google Scholar 

Kain, J. S. et al. Variability in thermal and phototactic preferences in Drosophila may reflect an adaptive bet-hedging strategy. Evolution 69, 3171–3185. https://doi.org/10.1111/evo.12813 (2015).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Pinceel, T. et al. An empirical confirmation of diversified bet hedging as a survival strategy in unpredictably varying environments. Ecology https://doi.org/10.1002/ecy.3496 (2021).

Article 
PubMed 

Google Scholar 

Lind, M. I. et al. Environmental variation mediates the evolution of anticipatory parental effects. Evolut. Lett. 4, 371–381. https://doi.org/10.1002/evl3.177 (2020).

Article 
MATH 

Google Scholar 

Fawcett, T. W. & Frankenhuis, W. E. Adaptive explanations for sensitive windows in development. Front. Zool. 12, S3. https://doi.org/10.1186/1742-9994-12-s1-s3 (2015).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Hoverman, J. T. & Relyea, R. A. How flexible is phenotypic plasticity? Developmental windows for trait induction and reversal. Ecology 88, 693–705. https://doi.org/10.1890/05-1697 (2007).

Article 
PubMed 

Google Scholar 

Taborsky, B. et al. An evolutionary perspective on stress responses, damage and repair. Horm. Behav. 142, 105180. https://doi.org/10.1016/j.yhbeh.2022.105180 (2022).

Article 
CAS 
PubMed 
MATH 

Google Scholar 

Kielland, O. N., Bech, C. & Einum, S. Is there plasticity in developmental instability? The effect of daily thermal fluctuations in an ectotherm. Ecol. Evolut. 7, 10567–10574. https://doi.org/10.1002/ece3.3556 (2017).

Article 
MATH 

Google Scholar 

Burton, T., Lakka, H. K. & Einum, S. Measuring phenotypes in fluctuating environments. Funct. Ecol. 34, 606–615. https://doi.org/10.1111/1365-2435.13501 (2020).

Article 

Google Scholar 

Drake, M., Miller, N. & Todgham, A. The role of stochastic thermal environments in modulating the thermal physiology of an intertidal limpet, Lottia digitalis. J. Exp. Biol. 220, 3072–3083. https://doi.org/10.1242/jeb.159020 (2017).

Article 
PubMed 

Google Scholar 

Stocker, C. et al. The effect of temperature variability on biological responses of ectothermic animals—A meta-analysis. Ecol. Lett. https://doi.org/10.1111/ele.14511 (2024).

Article 
PubMed 
MATH 

Google Scholar 

IPCC. in Climate change 2023: Synthesis Report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change (ed Lee Core writing team, H. and Romero, J.) 35–115 (IPCC, Geneva, Switzerland, 2023).

Huebner, J. D., Young, D. L. W., Loadman, N. L., Lentz, V. J. & Wiegand, M. D. Age-dependent survival, reproduction and photorepair activity in Daphnia magna (Straus, 1820) after exposure to artificial ultraviolet radiation. Photochem. Photobiol. 82, 1656–1661. https://doi.org/10.1562/2006-05-03-ra-890 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Fernández, C. E., Campero, M., Uvo, C. & Hansson, L.-A. Disentangling population strategies of two cladocerans adapted to different ultraviolet regimes. Ecol. Evolut. 8, 1995–2005. https://doi.org/10.1002/ece3.3792 (2018).

Article 
CAS 

Google Scholar 

Wolinski, L., Souza, M. S., Modenutti, B. & Balseiro, E. Effect of chronic UVR exposure on zooplankton molting and growth. Environ. Pollut. 267, 115448. https://doi.org/10.1016/j.envpol.2020.115448 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Fischer, J. M., Fields, P. A., Pryzbylkowski, P. G., Nicolai, J. L. & Neale, P. J. Sublethal exposure to UV radiation affects respiration rates of the freshwater cladoceran Daphnia catawba. Photochem. Photobiol. 82, 547–550. https://doi.org/10.1562/2005-08-30-ra-664 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Hansson, L.-A. Induced pigmentation in zooplankton: A trade-off between threats from predation and ultraviolet radiation. Proc. R. Soc. B Biol. Sci. 267, 2327–2331. https://doi.org/10.1098/rspb.2000.1287 (2000).

Article 
CAS 
MATH 

Google Scholar 

Hansson, L.-A. & Hylander, S. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochem. Photobiol. Sci. 8, 1266–1275. https://doi.org/10.1039/b908825c (2009).

Article 
CAS 
PubMed 

Google Scholar 

Oexle, S. et al. Rapid evolution of antioxidant defence in a natural population of Daphnia magna. J. Evolut. Biol. 29, 1328–1337. https://doi.org/10.1111/jeb.12873 (2016).

Article 
CAS 
MATH 

Google Scholar 

Rhode, S. C., Pawlowski, M. & Tollrian, R. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412, 69–72. https://doi.org/10.1038/35083567 (2001).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar 

Leach, T. H., Williamson, C. E., Theodore, N., Fischer, J. M. & Olson, M. H. The role of ultraviolet radiation in the diel vertical migration of zooplankton: An experimental test of the transparency-regulator hypothesis. J. Plankton Res. 37, 886–896. https://doi.org/10.1093/plankt/fbv061 (2015).

Article 

Google Scholar 

Hansson, L. A., Hylander, S. & Sommaruga, R. Escape from UV threats in zooplankton: A cocktail of behavior and protective pigmentation. Ecology 88, 1932–1939. https://doi.org/10.1890/06-2038.1 (2007).

Article 
PubMed 

Google Scholar 

Lee, M. & Hansson, L.-A. Daphnia magna trade-off safety from UV radiation for food. Ecol. Evolut. 11, 18026–18031. https://doi.org/10.1002/ece3.8399 (2021).

Article 

Google Scholar 

Walsh, M. R. et al. in Life Histories: Volume 5 (eds Martin Thiel & Gary A. Wellborn) (Oxford University Press, 2018).

Gustafsson, S., Rengefors, K. & Hansson, L. A. Increased consumer fitness following transfer of toxin tolerance to offspring via maternal effects. Ecology 86, 2561–2567. https://doi.org/10.1890/04-1710 (2005).

Article 

Google Scholar 

Coakley, C. M., Nestoros, E. & Little, T. J. Testing hypotheses for maternal effects in Daphnia magna. J. Evolut. Biol. 31, 211–216. https://doi.org/10.1111/jeb.13206 (2018).

Article 
CAS 

Google Scholar 

Zagarese, H. E., Cravero, W., Gonzalez, P. & Pedrozo, F. Copepod mortality induced by fluctuating levels of natural ultraviolet radiation simulating vertical water mixing. Limnol. Oceanogr. 43, 169–174. https://doi.org/10.4319/lo.1998.43.1.0169 (1998).

Article 
ADS 
CAS 

Google Scholar 

Stábile, F., Brönmark, C., Hansson, L.-A. & Lee, M. Fitness cost from fluctuating ultraviolet radiation in Daphnia magna. Biol. Lett. https://doi.org/10.1098/rsbl.2021.0261 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Miner, B. E., Kulling, P. M., Beer, K. D. & Kerr, B. Divergence in DNA photorepair efficiency among genotypes from contrasting UV radiation environments in nature. Mol. Ecol. 24, 6177–6187. https://doi.org/10.1111/mec.13460 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Galloway, L. & Etterson, J. Transgenerational plasticity is adaptive in the wild. Science 318, 1134–1136. https://doi.org/10.1126/science.1148766 (2007).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar 

Oliveira, C. Y. B. et al. A multidisciplinary review of Tetradesmus obliquus: A microalga suitable for large-scale biomass production and emerging environmental applications. Rev. Aquacult. 13, 1594–1618. https://doi.org/10.1111/raq.12536 (2021).

Article 
MATH 

Google Scholar 

Klüttgen, B., Dülmer, U., Engels, M. & Ratte, H. T. ADaM, an artificial fresh-water for the culture of zooplankton. Water Res. 28, 743–746. https://doi.org/10.1016/0043-1354(94)90157-0 (1994).

Article 

Google Scholar 

Williamson, C. E. & Rose, K. C. When UV meets fresh water. Science 329, 637–639 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Grad, G., Williamson, C. E. & Karapelou, D. M. Zooplankton survival and reproduction responses to damaging UV radiation: A test of reciprocity and photoenzymatic repair. Limnol. Oceanogr. 46, 584–591. https://doi.org/10.4319/lo.2001.46.3.0584 (2001).

Article 
ADS 

Google Scholar 

Rautio, M. & Tartarotti, B. UV radiation and freshwater zooplankton: Damage, protection and recovery. Freshw. Rev. J. Freshw. Biol. Assoc. 3, 105–131 (2010).

MATH 

Google Scholar 

Connelly, S. J. et al. UV-stressed Daphnia pulex increase fitness through uptake of vitamin D-3. Plos One https://doi.org/10.1371/journal.pone.0131847 (2015).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Harney, E., Paterson, S. & Plaistow, S. J. Offspring development and life-history variation in a water flea depends upon clone-specific integration of genetic, non-genetic and environmental cues. Funct. Ecol. 31, 1996–2007. https://doi.org/10.1111/1365-2435.12887 (2017).

Article 

Google Scholar 

R Core Team. (R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, (2021).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Book 
MATH 

Google Scholar 

Therneau, T. M. A package for survival analysis in R. See https://cran.r-project.org/package=survival (2022).

Brooks, M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. https://doi.org/10.32614/RJ-2017-066 (2017).

Article 
MATH 

Google Scholar 

Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3 3 (2020).

Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

Article 

Google Scholar 

Stoks, R., Govaert, L., Pauwels, K., Jansen, B. & De Meester, L. Resurrecting complexity: the interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecol. Lett. 19, 180–190. https://doi.org/10.1111/ele.12551 (2016).

Article 
PubMed 

Google Scholar 

Schwarzenberger, A., D’Hondt, S., Vyverman, W. & von Elert, E. Seasonal succession of cyanobacterial protease inhibitors and Daphnia magna genotypes in a eutrophic Swedish lake. Aquatic Sci. 75, 433–445. https://doi.org/10.1007/s00027-013-0290-y (2013).

Article 
CAS 

Google Scholar 

Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence—Late survival sacrificed for reproduction. Philos. Trans. R. Soc. B Biol. Sci. 332, 15–24. https://doi.org/10.1098/rstb.1991.0028 (1991).

Article 
ADS 
CAS 
MATH 

Google Scholar 

Daan, S., Deerenberg, C. & Dijkstra, C. Increased daily work precipitates natural death in the kestrel. J. Anim. Ecol. 65, 539–544. https://doi.org/10.2307/5734 (1996).

Article 

Google Scholar 

Maklakov, A. A. et al. Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.0376 (2017).

Article 
MATH 

Google Scholar 

Stamps, J. A. & Krishnan, V. V. Combining information from ancestors and personal experiences to predict individual differences in developmental trajectories. Am. Nat. 184, 647–657. https://doi.org/10.1086/678116 (2014).

Article 
PubMed 
MATH 

Google Scholar 

Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evolut. 17, 474–480. https://doi.org/10.1016/s0169-5347(02)02580-6 (2002).

Article 
MATH 

Google Scholar 

Vega, M. P. & Pizarro, R. A. Oxidative stress and defence mechanisms of the freshwater cladoceran Daphnia longispina exposed to UV radiation. J. Photochem. Photobiol. B-Biol. 54, 121–125. https://doi.org/10.1016/s1011-1344(00)00005-1 (2000).

Article 
CAS 

Google Scholar 

Mitchell, D. L. & Karentz, D. in Environmental UV Photobiology (eds Antony R. Young, Johan Moan, Lars Olof Björn, & Wilhelm Nultsch) 345–377 (Springer, 1993).

MacFadyen, E. J. et al. Molecular response to climate change: temperature dependence of UV-induced DNA damage and repair in the freshwater crustacean Daphnia pulicaria. Global Change Biol. 10, 408–416. https://doi.org/10.1111/j.1529-8817.2003.00750.x (2004).

Article 
ADS 
MATH 

Google Scholar 

Ramos-Jiliberto, R., Dauelsberg, P. & Zúñiga, L. R. Differential tolerance to ultraviolet-B light and photoenzymatic repair in cladocerans from a Chilean lake. Marine Freshw. Res. 55, 193–200. https://doi.org/10.1071/mf03027 (2004).

Article 
MATH 

Google Scholar 

Norris, J. R. et al. Evidence for climate change in the satellite cloud record. Nature 536, 72. https://doi.org/10.1038/nature18273 (2016).

Article 
ADS 
CAS 
PubMed 
MATH 

Google Scholar 

Ha, K. J. et al. Dynamics and characteristics of dry and moist heatwaves over East Asia. Npj Clim. Atmosph. Sci. https://doi.org/10.1038/s41612-022-00272-4 (2022).

Article 
MATH 

Google Scholar 

Carvalho, G. R. & Crisp, D. J. The clonal ecology of Daphnia magna (Crustacea, Cladocera) 1. Temporal changes in the clonal structure of a natural population. J. Anim. Ecol. 56, 453–468. https://doi.org/10.2307/5060 (1987).

Article 
MATH 

Google Scholar 

Stibor, H. & Lampert, W. Components of additive variance in life-history traits of Daphnia hyalina: Seasonal differences in the response to predator signals. Oikos 88, 129–138. https://doi.org/10.1034/j.1600-0706.2000.880115.x (2000).

Article 
ADS 
MATH 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
claudio
  • Website

Related Posts

DVIDS -News – The Future of Fitness: Nsa Souda Bay y MWR Rais Bar

agosto 20, 2025

Mohamed Salah: The secrets of a fitness ‘freak’

agosto 20, 2025

El ejercicio comunitario ayuda a las personas mayores a mantener el estado físico y la fuerza

agosto 20, 2025

La policía responde a las amenazas de bombas en South Jordan Fitness Center

agosto 20, 2025

La policía responde a las amenazas de bombas en South Jordan Fitness Center

agosto 20, 2025

Kane Brown muestra sus dramáticos resultados de conversión de fitness en Instagram

agosto 19, 2025
Leave A Reply Cancel Reply

Últimas publicaciones

Vista previa deportiva en el campus: fútbol de bandera, fútbol, cornhole, fútbol de fantasía

agosto 20, 2025

Predicción del riesgo de cáncer utilizando el aprendizaje automático del estilo de vida y los datos genéticos

agosto 20, 2025

Predicción del riesgo de cáncer utilizando el aprendizaje automático del estilo de vida y los datos genéticos

agosto 20, 2025

CUPE detiene huelgas con auxiliares de vuelo de Air Canada contrato nocturno

agosto 20, 2025
Sobre nosotros
Sobre nosotros

Bienvenidos a Tiempo Journal, tu fuente confiable para información actualizada sobre los temas que más te apasionan. En nuestro sitio, ofrecemos una amplia variedad de contenido sobre Deportes, Política, Turismo y Viajes, Estilo de Vida y mucho más. Nuestro compromiso es proporcionarte información de calidad, analizada desde diferentes perspectivas y en un formato accesible para todos.

Últimas publicaciones

Vista previa deportiva en el campus: fútbol de bandera, fútbol, cornhole, fútbol de fantasía

agosto 20, 2025

Predicción del riesgo de cáncer utilizando el aprendizaje automático del estilo de vida y los datos genéticos

agosto 20, 2025

Predicción del riesgo de cáncer utilizando el aprendizaje automático del estilo de vida y los datos genéticos

agosto 20, 2025

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

© 2025 tiempojournal. Designed by tiempojournal.
  • Home
  • Advertise us
  • Contact us
  • DMCA
  • Política de Privacidad
  • Sobre Nosotros
  • Términos y Condiciones

Type above and press Enter to search. Press Esc to cancel.