Close Menu
Tiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
¿Qué está de moda?

¿Por qué deberías centrarte en la longevidad en lugar de los objetivos de acondicionamiento físico a corto plazo?

agosto 13, 2025

John Mater: Las notas de los juegos de azar deportivas sobre Benmo estaban “en la broma”

agosto 13, 2025

Trump elige a EJ Antoni y lidera la Oficina de Estadísticas de la Oficina de Trabajo: ¿Qué sabes?

agosto 13, 2025
Facebook X (Twitter) Instagram
Tiempo JournalTiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
Tiempo Journal
Home » Profiling difenoconazole and flusilazole resistance, fitness penalty and phenotypic stability in Venturia inaequalis
Fitness

Profiling difenoconazole and flusilazole resistance, fitness penalty and phenotypic stability in Venturia inaequalis

claudioBy claudiofebrero 10, 2025No hay comentarios8 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email


Mubashir, S. S., Khan, N. A., Padder, B. A., Bhat, Z. A. & Bhat, S. N. Morphological differentiation of Venturia species infecting different pome and stone fruits in Jammu and Kashmir, India. Indian Phytopath. 77, 335–343 (2024).

Article 
MATH 

Google Scholar 

Mubashir, S. S. et al. Baseline sensitivities of Venturia inaequalis populations to the Difenaconazole, a sterol demethylation inhibitor fungicide. Front. Crop Improv. 11, 2965–2968 (2023).

MATH 

Google Scholar 

Köller, W., Wilcox, W., Barnard, J., Jones, A. & Braun, P. Detection and quantification of resistance of Venturia inaequalis populations to sterol demethylation inhibitors. Phytopathology 87, 184–190 (1997).

Article 
PubMed 

Google Scholar 

Nabi, A. et al. First report of Myclobutanil resistance and shift in sensitivity to difenoconazole and flusilazole in North-western Himalyan Venturia inaequalis populations. Australas. Plant Pathol. 52, 13–22 (2023).

Article 
MATH 

Google Scholar 

Carisse, O. & Jobin, T. Resistance to dodine in populations of Venturia inaequalis in Quebec, Canada. Plant. Health Progress. 11, 17 (2010).

Article 

Google Scholar 

Polat, Z. & Bayraktar, H. Resistance of Venturia inaequalis to multiple fungicides in Turkish apple orchards. J. Phytopathol. 169, 360–368 (2021).

Article 

Google Scholar 

Gao, L., Berrie, A., Yang, J. & Xu, X. Within-and between‐orchard variability in the sensitivity of Venturia inaequalis to myclobutanil, a DMI fungicide, in the UK. Pest Manage. Science: Former. Pesticide Sci. 65, 1241–1249 (2009).

Article 
MATH 

Google Scholar 

Hoffmeister, M., Zito, R., Böhm, J. & Stammler, G. Mutations in Cyp51 of Venturia inaequalis and their effects on DMI sensitivity. J. Plant Dis. Prot. 128, 1467–1478 (2021).

Article 

Google Scholar 

Chatzidimopoulos, M., Zambounis, A., Lioliopoulou, F. & Vellios, E. Detection of Venturia inaequalis isolates with multiple resistance in Greece. Microorganisms 10, 2354 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Yaegashi, H., Hirayama, K., Akahira, T. & Ito, T. Point mutation in CYP51A1 of Venturia inaequalis is associated with low sensitivity to sterol demethylation inhibitors. J. Gen. Plant Pathol. 86, 245–249 (2020).

Article 

Google Scholar 

Chartrain, L. & Brown, J. K. Molecular evolution and mechanisms of fungicide resistance in plant pathogenic fungi. In Burleigh Dodds Series in Agricultural Science (ed. Ferreira, J. B.) 1–37 (Burleigh Dodds Science Publishing Limited Cambridge, UK 2023).

Dooley, H. Fungicide-resistance Management Tactics: Impacts on Zymoseptoria Tritici Populations (University of Reading, 2015).

MATH 

Google Scholar 

Köller, W., Parker, D., Turechek, W., Avila-Adame, C. & Cronshaw, K. A two-phase resistance response of Venturia inaequalis populations to the QoI fungicides kresoxim-methyl and trifloxystrobin. Plant. Dis. 88, 537–544 (2004).

Article 
PubMed 

Google Scholar 

Prencipe, S., Sillo, F., Garibaldi, A., Gullino, M. L. & Spadaro, D. Development of a sensitive TaqMan qPCR assay for detection and quantification of Venturia inaequalis in apple leaves and fruit and in air samples. Plant. Dis. 104, 2851–2859 (2020).

Article 
PubMed 

Google Scholar 

Villani, S. M., Hulvey, J., Hily, J. M. & Cox, K. D. Overexpression of the CYP51A1 gene and repeated elements are associated with differential sensitivity to DMI fungicides in Venturia Inaequalis. Phytopathology 106, 562–571 (2016).

Article 
PubMed 

Google Scholar 

Standish, J. R., Brenneman, T. B., Brewer, M. T. & Stevenson, K. L. Assessing fitness costs and phenotypic instability of fentin hydroxide and tebuconazole resistance in Venturia Effusa. Plant. Dis. 103, 2271–2276 (2019).

Article 
PubMed 

Google Scholar 

Chen, F. et al. Baseline sensitivity of Monilinia fructicola from China to the DMI fungicide SYP-Z048 and analysis of DMI-resistant mutants. Plant. Dis. 96, 416–422 (2012).

Article 
PubMed 
MATH 

Google Scholar 

Zwiers, L. H., Stergiopoulos, I., Gielkens, M. M., Goodall, S. D. & De Waard, M. A. ABC transporters of the wheat pathogen Mycosphaerella graminicola function as protectants against biotic and xenobiotic toxic compounds. Mol. Genet. Genomics. 269, 499–507 (2003).

Article 
PubMed 

Google Scholar 

Hawkins, N. & Fraaije, B. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopathol. 56, 339–360 (2018).

Article 
PubMed 
MATH 

Google Scholar 

Mikaberidze, A. & McDonald, B. A. Fitness cost of resistance: impact on management. Fungicide resistance in plant pathogens: principles and a guide to practical management, 77–89 (2015).

Brent, K. J. & Hollomon, D. W. Fungicide Resistance: The Assessment of riskVol. 2 (Global Crop Protection Federation Brussels, 1998).

MATH 

Google Scholar 

Cools, H. J. & Fraaije, B. A. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest Manage. Sci. 69, 150–155 (2013).

Article 
MATH 

Google Scholar 

Gisi, U. Assessment of selection and resistance risk for demethylation inhibitor fungicides in aspergillus fumigatus in agriculture and medicine: a critical review. Pest Manage. Sci. 70, 352–364 (2014).

Article 

Google Scholar 

Frederick, Z. A., Villani, S. M. & Cox, K. D. The effect of delayed-dormant chemical treatments on demethylation inhibitor (DMI) sensitivity in a DMI-resistant population of Venturia Inaequalis. Plant. Dis. 99, 1751–1756 (2015).

Article 
PubMed 

Google Scholar 

Lucas, J. A., Hawkins, N. J. & Fraaije, B. A. The evolution of fungicide resistance. Adv. Appl. Microbiol. 90, 29–92 (2015).

Article 
PubMed 
MATH 

Google Scholar 

Nassreen, F. Assessment of Resistance Development in Venturia inaequalis (Cke.) Wint. And Alternaria Mali Roberts against Systemic Fungitoxicants in Kashmir Valley (SKUAST-K, 2008).

Google Scholar 

Kacho, N. F., Banday, S. & Ashraf, S. Venturia inaequalis sensitivity to ergosterol biosynthesis inhibitors in Kashmir valley. Indian Phytopath. 66, 284–286 (2013).

Google Scholar 

Schnabel, G. & Jones, A. L. The 14α-demethylasse (CYP51A1) gene is overexpressed in Venturia inaequalis strains resistant to myclobutanil. Phytopathology 91, 102–110 (2001).

Article 
PubMed 

Google Scholar 

Nene, Y. & Thapilyal, L. Poisoned food technique of fungicides in plant disease control. (2002).

Murray, M. & Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326 (1980).

Article 
PubMed 
PubMed Central 
MATH 

Google Scholar 

Chapman, K. S., Sundin, G. W. & Beckerman, J. L. Identification of resistance to multiple fungicides in field populations of Venturia Inaequalis. Plant. Dis. 95, 921–926 (2011).

Article 
PubMed 

Google Scholar 

Stević, M., Vukša, P. & Elezović, I. Resistance of Venturia inaequalis to demethylation inhibiting (DMI) fungicides. Žemdirbyste 97, 65–72 (2010).

Villani, S. M., Biggs, A. R., Cooley, D. R., Raes, J. J. & Cox, K. D. Prevalence of myclobutanil resistance and difenoconazole insensitivity in populations of Venturia Inaequalis. Plant. Dis. 99, 1526–1536 (2015).

Article 
PubMed 

Google Scholar 

Köller, W., Parker, D. & Reynolds, K. Baseline sensitivities of Venturia inaequalis to sterol demethylation inhibitors. (1991).

Smith, F. D., Parker, D. M. & Köller, W. Sensitivity distribution of Venturia inaequalis to the sterol demethylation inhibitor flusilazole: baseline sensitivity and implications for resistance monitoring. Phytopathology 81, 392–396 (1991).

Article 

Google Scholar 

Limon, C. L. Genetics behind the Variability in Sensitivity to the Demethylation Inhibitor (DMI) Fungicides Myclobutanil and Tebuconazole in Venturia Inaequalis (University of Reading, 2018).

MATH 

Google Scholar 

Cañas-Gutiérrez, G. P. et al. Analysis of the CYP51 gene and encoded protein in propiconazole‐resistant isolates of Mycosphaerella fijiensis. Pest Manage. Science: Former. Pesticide Sci. 65, 892–899 (2009).

Article 
MATH 

Google Scholar 

Becher, R. & Wirsel, S. G. Fungal cytochrome P450 sterol 14α-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl. Microbiol. Biotechnol. 95, 825–840 (2012).

Article 
PubMed 

Google Scholar 

Lichtemberg, P. S. et al. The point mutation G461S in the MfCYP51 gene is associated with tebuconazole resistance in Monilinia fructicola populations in Brazil. Phytopathology 107, 1507–1514 (2017).

Article 
PubMed 
MATH 

Google Scholar 

Parker, J. E. et al. Resistance to antifungals that target CYP51. J. Chem. Biol. 7, 143–161 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Warrilow, A. G. et al. The evolution of azole resistance in Candida albicans sterol 14α-demethylase (CYP51) through incremental amino acid substitutions. Antimicrob. Agents Chemother. 63, 101128aac02586–101128aac02518 (2019).

Article 
MATH 

Google Scholar 

Morio, F., Loge, C., Besse, B., Hennequin, C. & Le Pape, P. Screening for amino acid substitutions in the Candida albicans Erg11 protein of azole-susceptible and azole-resistant clinical isolates: new substitutions and a review of the literature. Diagn. Microbiol. Infect. Dis. 66, 373–384 (2010).

Article 
PubMed 

Google Scholar 

Zhan, J., Stefanato, F. & McDonald, B. A. Selection for increased cyproconazole tolerance in Mycosphaerella graminicola through local adaptation and in response to host resistance. Mol. Plant. Pathol. 7, 259–268 (2006).

Article 
PubMed 

Google Scholar 

Leroux, P., Albertini, C., Gautier, A., Gredt, M. & Walker, A. S. Mutations in the CYP51 gene correlated with changes in sensitivity to sterol 14α-demethylation inhibitors in field isolates of Mycosphaerella Graminicola. Pest Manage. Science: Former. Pesticide Sci. 63, 688–698 (2007).

Article 

Google Scholar 

Stammler, G. et al. Frequency of different CYP51-haplotypes of Mycosphaerella graminicola and their impact on epoxiconazole-sensitivity and-field efficacy. Crop Protect. 27, 1448–1456 (2008).

Article 
MATH 

Google Scholar 

Mair, W. et al. Proposal for a unified nomenclature for target-site mutations associated with resistance to fungicides. Pest Manage. Sci. 72, 1449–1459 (2016).

Article 
MATH 

Google Scholar 

Delye, C., Laigret, F. & Corio-Costet, M. F. A mutation in the 14 alpha-demethylase gene of Uncinula necator that correlates with resistance to a sterol biosynthesis inhibitor. Appl. Environ. Microbiol. 63, 2966–2970 (1997).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Tucker, M. A. et al. Analysis of mutations in West Australian populations of Blumeria graminis f. sp. hordei CYP51 conferring resistance to DMI fungicides. Pest Manage. Sci. 76, 1265–1272 (2020).

Article 

Google Scholar 

Karaoglanidis, G., Thanassoulopoulos, C. C. & Ioannidis, P. Fitness of Cercospora Beticola field isolates–resistant and–sensitive to demethylation inhibitor fungicides. Eur. J. Plant. Pathol. 107, 337–347 (2001).

Article 

Google Scholar 

Karaoglanidis, G. & Thanassoulopoulos, C. Phenotypic instability of Cercospora Beticola Sacc. Strains expressing resistance to the sterol demethylation-inhibiting (DMI) fungicide flutriafol after cold exposure. J. Phytopathol. 150, 692–696 (2002).

Article 

Google Scholar 

Köller, W., Smith, F. & Reynolds, K. Phenotypic instability of flusilazole sensitivity in Venturia Inaequalis. Plant. Pathol. 40, 608–611 (1991).

Article 
MATH 

Google Scholar 

Cox, K., Bryson, P. & Schnabel, G. Instability of propiconazole resistance and fitness in Monilinia fructicola. Phytopathology 97, 448–453 (2007).

Article 
PubMed 
MATH 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
claudio
  • Website

Related Posts

¿Por qué deberías centrarte en la longevidad en lugar de los objetivos de acondicionamiento físico a corto plazo?

agosto 13, 2025

Fort Buchanan mejora su estado físico con un gimnasio renovado | Artículo

agosto 13, 2025

¿Puede el presidente Trump correr las millas?

agosto 12, 2025

DVIDS -News – Fort Buchanan mejora la aptitud física con un gimnasio renovado

agosto 12, 2025

Acciones de salud y fitness ubicadas para un fuerte crecimiento en 2025

agosto 12, 2025

Here’s how to create a fitness routine as you age

agosto 12, 2025
Leave A Reply Cancel Reply

Últimas publicaciones

¿Por qué deberías centrarte en la longevidad en lugar de los objetivos de acondicionamiento físico a corto plazo?

agosto 13, 2025

John Mater: Las notas de los juegos de azar deportivas sobre Benmo estaban “en la broma”

agosto 13, 2025

Trump elige a EJ Antoni y lidera la Oficina de Estadísticas de la Oficina de Trabajo: ¿Qué sabes?

agosto 13, 2025

El desafío de las redes sociales de “Door Kick” golpea Sleepy Hollow – NBC Chicago

agosto 13, 2025
Sobre nosotros
Sobre nosotros

Bienvenidos a Tiempo Journal, tu fuente confiable para información actualizada sobre los temas que más te apasionan. En nuestro sitio, ofrecemos una amplia variedad de contenido sobre Deportes, Política, Turismo y Viajes, Estilo de Vida y mucho más. Nuestro compromiso es proporcionarte información de calidad, analizada desde diferentes perspectivas y en un formato accesible para todos.

Últimas publicaciones

¿Por qué deberías centrarte en la longevidad en lugar de los objetivos de acondicionamiento físico a corto plazo?

agosto 13, 2025

John Mater: Las notas de los juegos de azar deportivas sobre Benmo estaban “en la broma”

agosto 13, 2025

Trump elige a EJ Antoni y lidera la Oficina de Estadísticas de la Oficina de Trabajo: ¿Qué sabes?

agosto 13, 2025

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

© 2025 tiempojournal. Designed by tiempojournal.
  • Home
  • Advertise us
  • Contact us
  • DMCA
  • Política de Privacidad
  • Sobre Nosotros
  • Términos y Condiciones

Type above and press Enter to search. Press Esc to cancel.