Ross, F. C. et al. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).
Google Scholar
Zhang, F., Fan, D., Huang, J.-L. & Zuo, T. The gut microbiome: Linking dietary fiber to inflammatory diseases. Med. Microecol. 14, 100137 (2022).
Google Scholar
Deehan, E. C., Mocanu, V. & Madsen, K. L. Effects of dietary fibre on metabolic health and obesity. Nat. Rev. Gastroenterol. Hepatol. 21, 301–318 (2024).
Google Scholar
La Torre, D., Verbeke, K. & Dalile, B. Dietary fibre and the gut–brain axis: Microbiota-dependent and independent mechanisms of action. Gut Microbiome 2, e4 (2021).
Barber, T. M., Kabisch, S., Pfeiffer, A. F. H. & Weickert, M. O. The health benefits of dietary fibre. Nutrients 12, 3209 (2020).
Williams, B. A., Grant, L. J., Gidley, M. J. & Mikkelsen, D. Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. Int. J. Mol. Sci. 18, 2203 (2017).
Google Scholar
Cui, J. et al. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Compr. Rev. Food Sci. Food Saf. 18, 1514–1532 (2019).
Google Scholar
Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).
Google Scholar
Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).
Google Scholar
Al-Baadani, H. H. et al. The use of gum Arabic as a natural prebiotic in animals: A review. Anim. Feed Sci. Technol. 274, 114864 (2021).
Google Scholar
Anderson, D. M. W., Brown, D. M., Morrison, N. A. & Weiping, W. Specifications for gum arabic (Acacia senegal): Analytical data for samples collected between 1904 and 1989. Food Addit. Contam. 7, 303–321 (1990).
Google Scholar
Montenegro, M. A., Boiero, M. L., Valle, L. & Borsarelli, C. D. Gum Arabic: more than an edible emulsifier. In Products and Applications of Biopolymers (ed. Montenegro, M. A.) (InTech, 2012).
Khalid, S. A. et al. Gum Arabic in renal disease (GARDS study): Clinical evidence of dietary supplementation impact on progression of renal dysfunction. J. Funct. Foods 82, 104501 (2021).
Google Scholar
Rajab, E. et al. Gum Arabic supplementation prevents loss of learning and memory through stimulation of mitochondrial function in the hippocampus of type 2 diabetic rats. J. Funct. Foods 87, 104854 (2021).
Google Scholar
Gouda, E. & Babiker, F. Gum Arabic protects the rat heart from ischemia/reperfusion injury through anti-inflammatory and antioxidant pathways. Sci. Rep. 12, 1398 (2022).
Google Scholar
Kamal, E., Kaddam, L. A. G., Alagib, A. & Saeed, A. Dietary fibres (gum Arabic) supplementation modulates hepatic and renal profile among rheumatoid arthritis patients: Phase II trial. Front. Nutr. 8, 731995 (2021).
Google Scholar
Babiker, R. et al. Effects of gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: Two-arm randomized, placebo-controlled, double-blind trial. Nutr. J. 11, 111 (2012).
Google Scholar
Mahomoodally, M. F. Traditional medicines in Africa: An appraisal of ten potent African medicinal plants. Evid. Based Complement. Alternat. Med. 2013, 617459 (2013).
Google Scholar
United Nations Conference on Trade and Development. Commodities at a glance: special issue on gum arabic. (UNCTAD, 2018). https://unctad.org/system/files/official-document/suc2017d4_en.pdf.
Jarrar, A. H. et al. The effect of gum Arabic (Acacia senegal) on cardiovascular risk factors and gastrointestinal symptoms in adults at risk of metabolic syndrome: A randomized clinical trial. Nutrients 13, 2975 (2021).
Google Scholar
Ali, N. E. et al. Gum Arabic (Acacia senegal) augmented total antioxidant capacity and reduced C-reactive protein among haemodialysis patients: Phase II trial. Int. J. Nephrol. 2020, 4267176 (2020).
Google Scholar
Al-Jubori, Y. et al. The efficacy of gum Arabic in managing diseases: A systematic review of evidence-based clinical trials. Biomolecules 13, 1836 (2023).
Google Scholar
Ahmed, A. A. et al. Gum Arabic modifies anti-inflammatory cytokines in mice fed a high-fat diet. Bioact. Carbohydr. Diet. Fibre 25, 100261 (2021).
Fedail, J. S. et al. Gum Arabic improves semen quality and oxidative stress capacity in alloxan-induced diabetic rats. Asian Pac. J. Reprod. 5, 434–441 (2016).
Google Scholar
Ahmed, A. A., Fedail, J. S., Musa, H. H., Musa, T. H. & Sifaldin, A. Z. Gum Arabic supplementation improves antioxidant status and alters expression of oxidative stress genes in ovary of mice fed a high-fat diet. Middle East Fertil. Soc. J. 21, 101–108 (2016).
Google Scholar
Collins, T. F. X., Welsh, J. J., Black, T. N., Graham, S. L. & Brown, L. H. Study of the teratogenic potential of gum arabic. Food Chem. Toxicol. 25, 815–821 (1987).
Google Scholar
Almohaimeed, H. M. et al. Gum Arabic nanoformulation rescues neuronal lesions in bromobenzene-challenged rats by its antioxidant, anti-apoptotic and cytoprotective potentials. Sci. Rep. 12, 12015 (2022).
Google Scholar
Calame, W., Weseler, A. R., Viebke, C., Flynn, C. & Siemensma, A. D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 100, 1269–1275 (2008).
Google Scholar
Rawi, M. H., Abdullah, A., Ismail, A. & Sarbini, S. R. Manipulation of gut microbiota using acacia gum polysaccharide. ACS Omega 6, 17782–17797 (2021).
Google Scholar
Khalid, S. A. et al. Manipulating dietary fibre: Gum Arabic making friends of the colon and the kidney. Bioact. Carbohydr. Diet. Fibre 3, 71–76 (2014).
Google Scholar
Dauqan, E. & Abdullah, A. Utilization of gum Arabic for industries and human health. Am. J. Appl. Sci. 10, 1270–1279 (2013).
Google Scholar
O’Riordan, K. J. et al. Short-chain fatty acids: Microbial metabolites for gut–brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).
Google Scholar
Fung, T. C. The microbiota–immune axis as a central mediator of gut–brain communication. Neurobiol. Dis. 136, 104714 (2020).
Google Scholar
Barber, T. M. et al. Dietary influences on the microbiota–gut–brain axis. Int. J. Mol. Sci. 22, 3502 (2021).
Google Scholar
Connell, E. et al. Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol. Neurodegener. 17, 43 (2022).
Google Scholar
Roeselers, G. et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 5, 1595–1608 (2011).
Google Scholar
Xie, M. et al. Stabilized fermentation product of Cetobacterium somerae improves gut and liver health and antiviral immunity of zebrafish. Fish Shellfish Immunol. 120, 56–66 (2022).
Google Scholar
Qi, X. et al. Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome 11, 135 (2023).
Google Scholar
Zhao, Y., Li, S., Lessing, D. J. & Chu, W. The attenuating effects of synbiotic containing Cetobacterium somerae and Astragalus polysaccharide against trichlorfon-induced hepatotoxicity in crucian carp (Carassius carassius). J. Hazard. Mater. 461, 132621 (2024).
Google Scholar
Wang, A. et al. Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes 13, 1–15 (2021).
Google Scholar
KleineBardenhorst, S. et al. Data analysis strategies for microbiome studies in human populations—A systematic review of current practice. mSystems 6, 10–128 (2021).
Spence, R. & Smith, C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav. Ecol. 17, 779–783 (2006).
Google Scholar
Eaton, R. C. & Farley, R. D. Spawning cycle and egg production of zebrafish, Brachydanio rerio, in the laboratory. Copeia 1974, 195–204 (1974).
Google Scholar
Zhai, G., Jia, J., Bereketoglu, C., Yin, Z. & Pradhan, A. Sex-specific differences in zebrafish brains. Biol. Sex Differ. 13, 31 (2022).
Google Scholar
Rogge, G., Jones, D., Hubert, G. W., Lin, Y. & Kuhar, M. J. CART peptides: Regulators of body weight, reward and other functions. Nat. Rev. Neurosci. 9, 747–758 (2008).
Google Scholar
Iram, S., Rahman, S., Choi, I. & Kim, J. Insight into the function of tetranectin in human diseases: A review and prospects for tetranectin-targeted disease treatment. Heliyon 10, (2024).
Luo, M. et al. Identification, characterization, and agglutinating activity of a novel C-type lectin domain family 3 member B (CLEC3B) discovered in golden pompano, Trachinotus ovatus. Fish Shellfish Immunol. 140, 108988 (2023).
Google Scholar
Caro, M. et al. Zebrafish dives into food research: Effectiveness assessment of bioactive compounds. Food Funct. 7, 2615–2623 (2016).
Google Scholar
Alobaidi, S. Therapeutic potential of gum Arabic (Acacia senegal) in chronic kidney disease management: A narrative review. J. Clin. Med. 13, 5778 (2024).
Google Scholar
Reagan-Shaw, S., Nihal, M. & Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 (2008).
Google Scholar
Naiel, M. A. E., Abd El-hameed, S. A. A., Arisha, A. H. & Negm, S. S. Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune-related gene expression in tilapia fish. Aquaculture 556, 738249 (2022).
Google Scholar
Soaudy, M. R. et al. The modulatory impact of Arabic gum and lecithin on the efficiency of cold-stressed Nile tilapia (Oreochromis niloticus). Aquac. Rep. 38, 102332 (2024).
Google Scholar
Falaye, A. E., Abah, A. & Sule, S. O. Effect of gum Arabic (Acacia senegal) on growth performance, carcass quality and health of Clarias gariepinus juveniles. J. Med. Vet. 7, 163–76 (2024).
Google Scholar
Yousefi, M., NaderiFarsani, M., Ghafarifarsani, H. & Raeeszadeh, M. Dietary Lactobacillus helveticus and gum Arabic improves growth indices, digestive enzyme activities, intestinal microbiota, innate immunological parameters, antioxidant capacity, and disease resistance in common carp. Fish Shellfish Immunol. 135, 108652 (2023).
Google Scholar
Verbraecken, J., Van De Heyning, P., De Backer, W. & Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults: A comparison study. Metabolism 55, 515–524 (2006).
Google Scholar
Liu, L., Huh, J. R. & Shah, K. Microbiota and the gut–brain axis: Implications for new therapeutic design in the CNS. EBioMedicine 77, 103908 (2022).
Google Scholar
Simpson, C. A. et al. The gut microbiota in anxiety and depression—A systematic review. Clin. Psychol. Rev. 83, 101943 (2021).
Google Scholar
Yakmaz, F., Bozkurt, A. S. & Görücü Yilmaz, Ş. PTZ-kindled rat model; evaluation of seizure, hippocampal EGR-1, and Rev-erbα gene regulation, behavioral analysis, and antioxidant capacity of gum Arabic. Mol. Biol. Rep. 51, 279 (2024).
Google Scholar
Cai, Y., Folkerts, J., Folkerts, G., Maurer, M. & Braber, S. Microbiota-dependent and -independent effects of dietary fibre on human health. Br. J. Pharmacol. 177, 1363–81 (2020).
Google Scholar
Montagne, L., Pluske, J. R. & Hampson, D. J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108, 95–117 (2003).
Google Scholar
Luan, Y. et al. The fish microbiota: Research progress and potential applications. Engineering 29, 137–46 (2023).
Google Scholar
Kim, Y. S., Unno, T., Kim, B. Y. & Park, M. S. Sex differences in gut microbiota. World J. Mens Health 38, 48–60 (2020).
Google Scholar
Scepanovic, P. et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 7, 130 (2019).
Google Scholar
Worsley, S. F. et al. Assessing the causes and consequences of gut mycobiome variation in a wild population of the Seychelles warbler. Microbiome 10, 242 (2022).
Google Scholar
Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).
Google Scholar
Liang, X., Bushman, F. D. & FitzGerald, G. A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA 112, 10479–10484 (2015).
Google Scholar
Jaggar, M., Rea, K., Spichak, S., Dinan, T. G. & Cryan, J. F. You’ve got male: Sex and the microbiota–gut–brain axis across the lifespan. Front. Neuroendocrinol. 56, 100815 (2020).
Google Scholar
Yan, R. et al. Effect of sex on the gut microbiota characteristics of passerine migratory birds. Front. Microbiol. 13, 917373 (2022).
Google Scholar
Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).
Google Scholar
Ma, Y. et al. Sex-dependent effects of silver nanoparticles on the zebrafish gut microbiota. Environ. Sci. Nano 5, 740–751 (2018).
Google Scholar
Chen, L. et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. Environ. Pollut. 240, 17–26 (2018).
Google Scholar
von Hofsten, J. & Olsson, P. E. Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes. Reprod. Biol. Endocrinol. 3, 63 (2005).
Google Scholar
Martyniuk, C. J. et al. Sex-dependent host–microbiome dynamics in zebrafish: implications for toxicology and gastrointestinal physiology. Comp. Biochem. Physiol. D Genomics Proteomics 42, 100993 (2022).
Google Scholar
Maritan, E., Quagliariello, A., Frago, E., Patarnello, T. & Martino, M. E. The role of animal hosts in shaping gut microbiome variation. Philos. Trans. R. Soc. B 379, 20230071 (2024).
Google Scholar
Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).
Google Scholar
Liu, X. et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502-513.e13 (2018).
Google Scholar
Moffett, J. R., Puthillathu, N., Vengilote, R., Jaworski, D. M. & Namboodiri, A. M. Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics and oncogenesis—Part 1: Acetyl-CoA, acetogenesis and acyl-CoA short-chain synthetases. Front. Physiol. 11, 580167 (2020).
Google Scholar
Soliman, M. L., Puig, K. L., Combs, C. K. & Rosenberger, T. A. Acetate reduces microglia inflammatory signaling in vitro. J. Neurochem. 123, 555–567 (2012).
Google Scholar
Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).
Google Scholar
He, Q. et al. Acetate enables metabolic fitness and cognitive performance during sleep disruption. Cell Metab. 36, 1998–2014 (2024).
Google Scholar
Polakof, S., Panserat, S., Soengas, J. L. & Moon, T. W. Glucose metabolism in fish: A review. J. Comp. Physiol. B 182, 1015–1045 (2012).
Google Scholar
Luong, A. D., Roy, I., Malhotra, B. D. & Luong, J. H. T. Analytical and biosensing platforms for insulin: A review. Sens. Actuators Rep. 3, 100028 (2021).
Google Scholar
Hernández, M. A. G., Canfora, E. E., Jocken, J. W. E. & Blaak, E. E. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11, 1943 (2019).
Google Scholar
Byrne, C. S., Chambers, E. S., Morrison, D. J. & Frost, G. The role of short-chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 39, 1331–1338 (2015).
Google Scholar
Zhang, H. et al. Effects of dietary sodium acetate on food intake, weight gain, intestinal digestive enzyme activities, energy metabolism and gut microbiota in cultured fish: Zebrafish as a model. Aquaculture 523, 735188 (2020).
Google Scholar
Liu, L., Liu, H., Fu, C., Li, C. & Li, F. Acetate induces anorexia via up-regulating the hypothalamic pro-opiomelanocortin (POMC) gene expression in rabbits. J. Anim. Feed Sci. 26, 266–273 (2017).
Sudo, N. The hypothalamic–pituitary–adrenal axis and gut microbiota: A target for dietary intervention? In The Gut-Brain Axis: Dietary, Probiotic, and Prebiotic Interventions on the Microbiota (ed. Sudo, N.) 293–304 (Elsevier, 2016).
Google Scholar
Koylu, E. O., Balkan, B., Kuhar, M. J. & Pogun, S. Cocaine- and amphetamine-regulated transcript (CART) and the stress response. Peptides 27, 1956–1969 (2006).
Google Scholar
Lee, H. B. et al. Key HPI axis receptors facilitate light adaptive behavior in larval zebrafish. Sci. Rep. 14, 7759 (2024).
Google Scholar
Nipu, N., Antomagesh, F., Faught, E. & Vijayan, M. M. Glucocorticoid receptor activation reduces food intake independent of hyperglycemia in zebrafish. Sci. Rep. 12, 15677 (2022).
Google Scholar
Bratusch-Marrain, P. R. Insulin-counteracting hormones: Their impact on glucose metabolism. Diabetologia 24, 74–79 (1983).
Google Scholar
Mathew, A. R. et al. Vitamin B12 deficiency and the nervous system: beyond metabolic decompensation—Comparing biological models and gaining new insights into molecular and cellular mechanisms. Int. J. Mol. Sci. 25, 590 (2024).
Google Scholar
Sloan, J. L. et al. The vitamin B12 processing enzyme, mmachc, is essential for zebrafish survival, growth and retinal morphology. Hum. Mol. Genet. 29, 2109–2123 (2020).
Google Scholar
Robea, M. A. et al. Vitamin B12 ameliorates pesticide-induced sociability impairment in zebrafish (Danio rerio): A prospective controlled intervention study. Animals 14, 405 (2024).
Google Scholar
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).
Google Scholar
Schley, P. D. & Field, C. J. The immune-enhancing effects of dietary fibres and prebiotics. Br. J. Nutr. 87, S221–S230 (2002).
Google Scholar
Xie, L., Alam, M. J., Marques, F. Z. & Mackay, C. R. A major mechanism for immunomodulation: dietary fibres and acid metabolites. Semin. Immunol. 66, 101737 (2023).
Google Scholar
Ewart, K. V., Johnson, S. C. & Ross, N. W. Lectins of the innate immune system and their relevance to fish health. ICES J. Mar. Sci. 58, 380–385 (2001).
Google Scholar
Barkeer, S. et al. Gum acacia dietary fiber: Significance in immunomodulation, inflammatory diseases, and cancer. Phytother. Res. 38, 1509–1521 (2024).
Google Scholar
Jasienska, G., Bribiescas, R. G., Furberg, A. S., Helle, S. & Núñez-de la Mora, A. Human reproduction and health: An evolutionary perspective. Lancet 390, 510–520 (2017).
Google Scholar
Kosova, G., Abney, M. & Ober, C. Heritability of reproductive fitness traits in a human population. Proc. Natl Acad. Sci. USA 107, 1772–1778 (2010).
Google Scholar
Lin, Y. et al. Dietary fibre supplementation improves semen production by increasing Leydig cells and testosterone synthesis in a growing boar model. Front. Vet. Sci. 9, 850658 (2022).
Google Scholar
Jarrett, S. & Ashworth, C. J. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 9, 59 (2018).
Google Scholar
Gaskins, A. J. et al. Effect of daily fiber intake on reproductive function: The BioCycle Study. Am. J. Clin. Nutr. 90, 1061–1069 (2009).
Google Scholar
Gaskins, A. J., Mumford, S. L., Wactawski-Wende, J. & Schisterman, E. F. Effect of daily fiber intake on luteinizing hormone levels in reproductive-aged women. Eur. J. Nutr. 51, 249–253 (2012).
Google Scholar
Salas-Huetos, A., Bulló, M. & Salas-Salvadó, J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Hum. Reprod. Update 23, 371–389 (2017).
Google Scholar
Imbabi, T. A. et al. Enhancing semen quality, brain neurotransmitters, and antioxidant status of rabbits under heat stress by acacia gum, vitamin C, and lycopene as dietary supplements: An in vitro and in silico study. Ital. J. Anim. Sci. 22, 321–336 (2023).
Google Scholar
Nofal, A. E., Okdah, Y. A., Rady, M. I. & Hassaan, H. Z. Gum acacia attenuates cisplatin toxic effect: Spermatogenesis dysfunction and infertility in rats. Int. J. Biol. Macromol. 240, 124292 (2023).
Google Scholar
Mohamed, R. I., Daoud, I. M., Suliman, A. G. & Kaddam, L. Effect of prebiotic dietary supplement Acacia senegal on hormonal and metabolic markers in polycystic ovary syndrome patients: A pilot study. Cureus (2023).
Nasir, O. et al. Comparative efficacy of gum Arabic (Acacia senegal) and Tribulus terrestris on male fertility. Saudi Pharm. J. 28, 1791–1796 (2020).
Google Scholar
Willis, S. K. et al. Glycemic load, dietary fiber, and added sugar and fecundability in two preconception cohorts. Am. J. Clin. Nutr. 112, 27–38 (2020).
Google Scholar
Chang, J. et al. Revealing the mechanism of fibre promoting sow embryo implantation by altering the abundance of uterine fluid proteins: A proteomic perspective. J. Proteomics 297, 105123 (2024).
Google Scholar
Zhang, J. et al. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut–brain axis. mSystems 4, 10–128 (2019).
Google Scholar
Wang, Y. & Xie, Z. Exploring the role of gut microbiome in male reproduction. Andrology 10, 441–450 (2022).
Google Scholar
Hu, Y. et al. Chicory fibre improves reproductive performance of pregnant rats involving altering intestinal microbiota composition. J. Appl. Microbiol. 129, 1693–1705 (2020).
Google Scholar
Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. 83, 13–34 (2008).
Google Scholar
Marques, J. C., Li, M., Schaak, D., Robson, D. N. & Li, J. M. Internal state dynamics shape brainwide activity and foraging behaviour. Nature 577, 239–243 (2020).
Google Scholar
Filosa, A., Barker, A. J., Dal Maschio, M. & Baier, H. Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. Neuron 90, 596–608 (2016).
Google Scholar
Nishio, S.-I. et al. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner. Mol. Endocrinol. 26, 1316–1326 (2012).
Google Scholar
Volkoff, H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front. Neurosci. 10, 540 (2016).
Google Scholar
Guillot, R. et al. Behind melanocortin antagonist overexpression in the zebrafish brain: A behavioral and transcriptomic approach. Horm. Behav. 82, 87–100 (2016).
Google Scholar
Maklakov, A. A. & Immler, S. The expensive germline and the evolution of ageing. Curr. Biol. 26, R577–R586 (2016).
Google Scholar
Leibold, S. & Hammerschmidt, M. Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction. PLoS One 10, e0120776 (2015).
Google Scholar
Merrill, L. & Collins, P. M. Environment-specific and sex-specific allocation strategies among gonadal, somatic, and immune indices in a marine fish. Can. J. Zool. 93, 207–212 (2015).
Google Scholar
Cachat, J. et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protoc. 5, 1786–1799 (2010).
Google Scholar
Evans, C. E. L. Dietary fibre and cardiovascular health: A review of current evidence and policy. Proc. Nutr. Soc. 79, 61–67 (2020).
Google Scholar
Mortensen, A. et al. Re-evaluation of xanthan gum (E 415) as a food additive. EFSA J. 15, e04909 (2017).
Google Scholar
Stephen, A. M. et al. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 30, 149–190 (2017).
Google Scholar
Watts, S. A. & D’Abramo, L. R. Standardized reference diets for zebrafish: Addressing nutritional control in experimental methodology. Annu. Rev. Nutr. 41, 511–527 (2021).
Google Scholar
Watts, S. A., Powell, M. & D’Abramo, L. R. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 53, 144–160 (2012).
Google Scholar
Fowler, L. A., Williams, M. B., D’Abramo, L. R. & Watts, S. A. Zebrafish nutrition—moving forward. In The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (ed. Fowler, L. A.) 379–401 (Elsevier, 2019).
Leigh, S. C., Nguyen-Phuc, B. Q. & German, D. P. The effects of protein and fiber content on gut structure and function in zebrafish (Danio rerio). J. Comp. Physiol. B 188, 237–253 (2018).
Google Scholar
Hillman, C., Cooper, A. H., Ram, P. & Parker, M. O. The effect of laboratory diet and feeding on growth parameters in juvenile zebrafish. Lab Anim. (NY) 53, 327–335 (2024).
Google Scholar
Genario, R., de Abreu, M. S., Giacomini, A. C. V. V., Demin, K. A. & Kalueff, A. V. Sex differences in behavior and neuropharmacology of zebrafish. Eur. J. Neurosci. 52, 2586–2603 (2020).
Google Scholar
Adhish, M. & Manjubala, I. Effectiveness of zebrafish models in understanding human diseases—A review of models. Heliyon 9, e14557 (2023).
Google Scholar
Chia, K., Klingseisen, A., Sieger, D. & Priller, J. Zebrafish as a model organism for neurodegenerative disease. Front. Mol. Neurosci. 15, 940484 (2022).
Google Scholar
Kalueff, A. V., Stewart, A. M. & Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35, 63–75 (2014).
Google Scholar
Xia, H. et al. Zebrafish: An efficient vertebrate model for understanding role of gut microbiota. Mol. Med. 28, 161 (2022).
Google Scholar
Frederickson, S. C. et al. Comparison of juvenile feed protocols on growth and spawning in zebrafish. J. Am. Assoc. Lab. Anim. Sci. 60, 298–305 (2021).
Google Scholar
Purushothaman, K. et al. Protocol for feeding strategy and proteomics analysis of zebrafish Danio rerio using S-trap and iTRAQ techniques. STAR Protoc. 5, 103513 (2024).
Google Scholar
Pesti, G. M. A new analytical procedure to replace the outdated Weende proximal feed ingredient analysis paradigm is long overdue. Anim. Prod. Sci. 64, (2024).
Aleström, P. et al. Zebrafish: Housing and husbandry recommendations. Lab Anim. 54, 213–224 (2020).
Google Scholar
Lawrence, C. Zebrafish larviculture. In The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (ed. Lawrence, C.) 365–378 (Elsevier, 2019).
Van Stappen, G., Sorgeloos, P. & Rombaut, G. (eds.) Manual on Artemia production and use. FAO Fisheries and Aquaculture Technical Paper No. 702 (FAO, Rome, 2024). https://doi.org/10.4060/cd0313en
Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 269, 1–20 (2007).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
Le Gall, G. Sample collection and preparation of biofluids and extracts for NMR spectroscopy. In Metabonomics: Methods and Protocols (ed. Bjerrum, J. T.) 1277, 15–28 (2015).
Weljie, A. M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C. M. Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78, 4430–4442 (2006).
Google Scholar
Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H. & de Polavieja, G. G. idtracker.ai: Tracking all individuals in small or large collectives of unmarked animals. Nat. Methods 16, 179–182 (2019).
Google Scholar
Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Abi Assaf, J. A., et al. Gum Arabic (Acacia senegal) enhances reproduction and modulates the microbiota-gut-brain axis of zebrafish in a sex-specific and dosage-dependent manner. Preprint at https://doi.org/10.1101/2024.10.04.616708 (2024).