Close Menu
Tiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
¿Qué está de moda?

Madison Vegan Fest atrae a diversas multitudes para celebrar un estilo de vida basado en plantas | Noticias

octubre 5, 2025

De las bombas de buscapersonas a la política de poder: los cálculos inacabados del Líbano

octubre 5, 2025

El cierre significaba que no había informe de trabajo. Esto es lo que dije sobre la economía

octubre 5, 2025
Facebook X (Twitter) Instagram
Tiempo JournalTiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
Tiempo Journal
Home » Gum Arabic modulates the microbiota-gut-brain axis and affects general fitness in zebrafish
Fitness

Gum Arabic modulates the microbiota-gut-brain axis and affects general fitness in zebrafish

claudioBy claudiooctubre 5, 2025No hay comentarios23 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email


Ross, F. C. et al. The interplay between diet and the gut microbiome: Implications for health and disease. Nat. Rev. Microbiol. 22, 671–686 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, F., Fan, D., Huang, J.-L. & Zuo, T. The gut microbiome: Linking dietary fiber to inflammatory diseases. Med. Microecol. 14, 100137 (2022).

Article 
CAS 

Google Scholar 

Deehan, E. C., Mocanu, V. & Madsen, K. L. Effects of dietary fibre on metabolic health and obesity. Nat. Rev. Gastroenterol. Hepatol. 21, 301–318 (2024).

Article 
PubMed 

Google Scholar 

La Torre, D., Verbeke, K. & Dalile, B. Dietary fibre and the gut–brain axis: Microbiota-dependent and independent mechanisms of action. Gut Microbiome 2, e4 (2021).

Barber, T. M., Kabisch, S., Pfeiffer, A. F. H. & Weickert, M. O. The health benefits of dietary fibre. Nutrients 12, 3209 (2020).

Williams, B. A., Grant, L. J., Gidley, M. J. & Mikkelsen, D. Gut fermentation of dietary fibres: Physico-chemistry of plant cell walls and implications for health. Int. J. Mol. Sci. 18, 2203 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cui, J. et al. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Compr. Rev. Food Sci. Food Saf. 18, 1514–1532 (2019).

Article 
PubMed 

Google Scholar 

Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Al-Baadani, H. H. et al. The use of gum Arabic as a natural prebiotic in animals: A review. Anim. Feed Sci. Technol. 274, 114864 (2021).

Article 

Google Scholar 

Anderson, D. M. W., Brown, D. M., Morrison, N. A. & Weiping, W. Specifications for gum arabic (Acacia senegal): Analytical data for samples collected between 1904 and 1989. Food Addit. Contam. 7, 303–321 (1990).

Article 
CAS 
PubMed 

Google Scholar 

Montenegro, M. A., Boiero, M. L., Valle, L. & Borsarelli, C. D. Gum Arabic: more than an edible emulsifier. In Products and Applications of Biopolymers (ed. Montenegro, M. A.) (InTech, 2012).

Google Scholar 

Khalid, S. A. et al. Gum Arabic in renal disease (GARDS study): Clinical evidence of dietary supplementation impact on progression of renal dysfunction. J. Funct. Foods 82, 104501 (2021).

Article 

Google Scholar 

Rajab, E. et al. Gum Arabic supplementation prevents loss of learning and memory through stimulation of mitochondrial function in the hippocampus of type 2 diabetic rats. J. Funct. Foods 87, 104854 (2021).

Article 

Google Scholar 

Gouda, E. & Babiker, F. Gum Arabic protects the rat heart from ischemia/reperfusion injury through anti-inflammatory and antioxidant pathways. Sci. Rep. 12, 1398 (2022).

Article 

Google Scholar 

Kamal, E., Kaddam, L. A. G., Alagib, A. & Saeed, A. Dietary fibres (gum Arabic) supplementation modulates hepatic and renal profile among rheumatoid arthritis patients: Phase II trial. Front. Nutr. 8, 731995 (2021).

Article 

Google Scholar 

Babiker, R. et al. Effects of gum Arabic ingestion on body mass index and body fat percentage in healthy adult females: Two-arm randomized, placebo-controlled, double-blind trial. Nutr. J. 11, 111 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mahomoodally, M. F. Traditional medicines in Africa: An appraisal of ten potent African medicinal plants. Evid. Based Complement. Alternat. Med. 2013, 617459 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar 

United Nations Conference on Trade and Development. Commodities at a glance: special issue on gum arabic. (UNCTAD, 2018). https://unctad.org/system/files/official-document/suc2017d4_en.pdf.

Jarrar, A. H. et al. The effect of gum Arabic (Acacia senegal) on cardiovascular risk factors and gastrointestinal symptoms in adults at risk of metabolic syndrome: A randomized clinical trial. Nutrients 13, 2975 (2021).

Article 

Google Scholar 

Ali, N. E. et al. Gum Arabic (Acacia senegal) augmented total antioxidant capacity and reduced C-reactive protein among haemodialysis patients: Phase II trial. Int. J. Nephrol. 2020, 4267176 (2020).

Article 

Google Scholar 

Al-Jubori, Y. et al. The efficacy of gum Arabic in managing diseases: A systematic review of evidence-based clinical trials. Biomolecules 13, 1836 (2023).

Article 

Google Scholar 

Ahmed, A. A. et al. Gum Arabic modifies anti-inflammatory cytokines in mice fed a high-fat diet. Bioact. Carbohydr. Diet. Fibre 25, 100261 (2021).

Google Scholar 

Fedail, J. S. et al. Gum Arabic improves semen quality and oxidative stress capacity in alloxan-induced diabetic rats. Asian Pac. J. Reprod. 5, 434–441 (2016).

Article 

Google Scholar 

Ahmed, A. A., Fedail, J. S., Musa, H. H., Musa, T. H. & Sifaldin, A. Z. Gum Arabic supplementation improves antioxidant status and alters expression of oxidative stress genes in ovary of mice fed a high-fat diet. Middle East Fertil. Soc. J. 21, 101–108 (2016).

Article 

Google Scholar 

Collins, T. F. X., Welsh, J. J., Black, T. N., Graham, S. L. & Brown, L. H. Study of the teratogenic potential of gum arabic. Food Chem. Toxicol. 25, 815–821 (1987).

Article 
CAS 
PubMed 

Google Scholar 

Almohaimeed, H. M. et al. Gum Arabic nanoformulation rescues neuronal lesions in bromobenzene-challenged rats by its antioxidant, anti-apoptotic and cytoprotective potentials. Sci. Rep. 12, 12015 (2022).

Article 

Google Scholar 

Calame, W., Weseler, A. R., Viebke, C., Flynn, C. & Siemensma, A. D. Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 100, 1269–1275 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Rawi, M. H., Abdullah, A., Ismail, A. & Sarbini, S. R. Manipulation of gut microbiota using acacia gum polysaccharide. ACS Omega 6, 17782–17797 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Khalid, S. A. et al. Manipulating dietary fibre: Gum Arabic making friends of the colon and the kidney. Bioact. Carbohydr. Diet. Fibre 3, 71–76 (2014).

Article 
CAS 

Google Scholar 

Dauqan, E. & Abdullah, A. Utilization of gum Arabic for industries and human health. Am. J. Appl. Sci. 10, 1270–1279 (2013).

Article 

Google Scholar 

O’Riordan, K. J. et al. Short-chain fatty acids: Microbial metabolites for gut–brain axis signalling. Mol. Cell. Endocrinol. 546, 111572 (2022).

Article 
PubMed 

Google Scholar 

Fung, T. C. The microbiota–immune axis as a central mediator of gut–brain communication. Neurobiol. Dis. 136, 104714 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Barber, T. M. et al. Dietary influences on the microbiota–gut–brain axis. Int. J. Mol. Sci. 22, 3502 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Connell, E. et al. Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol. Neurodegener. 17, 43 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Roeselers, G. et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 5, 1595–1608 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xie, M. et al. Stabilized fermentation product of Cetobacterium somerae improves gut and liver health and antiviral immunity of zebrafish. Fish Shellfish Immunol. 120, 56–66 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Qi, X. et al. Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome 11, 135 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhao, Y., Li, S., Lessing, D. J. & Chu, W. The attenuating effects of synbiotic containing Cetobacterium somerae and Astragalus polysaccharide against trichlorfon-induced hepatotoxicity in crucian carp (Carassius carassius). J. Hazard. Mater. 461, 132621 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Wang, A. et al. Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes 13, 1–15 (2021).

Article 
PubMed 

Google Scholar 

KleineBardenhorst, S. et al. Data analysis strategies for microbiome studies in human populations—A systematic review of current practice. mSystems 6, 10–128 (2021).

Google Scholar 

Spence, R. & Smith, C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav. Ecol. 17, 779–783 (2006).

Article 

Google Scholar 

Eaton, R. C. & Farley, R. D. Spawning cycle and egg production of zebrafish, Brachydanio rerio, in the laboratory. Copeia 1974, 195–204 (1974).

Article 

Google Scholar 

Zhai, G., Jia, J., Bereketoglu, C., Yin, Z. & Pradhan, A. Sex-specific differences in zebrafish brains. Biol. Sex Differ. 13, 31 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rogge, G., Jones, D., Hubert, G. W., Lin, Y. & Kuhar, M. J. CART peptides: Regulators of body weight, reward and other functions. Nat. Rev. Neurosci. 9, 747–758 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Iram, S., Rahman, S., Choi, I. & Kim, J. Insight into the function of tetranectin in human diseases: A review and prospects for tetranectin-targeted disease treatment. Heliyon 10, (2024).

Luo, M. et al. Identification, characterization, and agglutinating activity of a novel C-type lectin domain family 3 member B (CLEC3B) discovered in golden pompano, Trachinotus ovatus. Fish Shellfish Immunol. 140, 108988 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Caro, M. et al. Zebrafish dives into food research: Effectiveness assessment of bioactive compounds. Food Funct. 7, 2615–2623 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Alobaidi, S. Therapeutic potential of gum Arabic (Acacia senegal) in chronic kidney disease management: A narrative review. J. Clin. Med. 13, 5778 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Reagan-Shaw, S., Nihal, M. & Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Naiel, M. A. E., Abd El-hameed, S. A. A., Arisha, A. H. & Negm, S. S. Gum Arabic-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune-related gene expression in tilapia fish. Aquaculture 556, 738249 (2022).

Article 
CAS 

Google Scholar 

Soaudy, M. R. et al. The modulatory impact of Arabic gum and lecithin on the efficiency of cold-stressed Nile tilapia (Oreochromis niloticus). Aquac. Rep. 38, 102332 (2024).

Article 

Google Scholar 

Falaye, A. E., Abah, A. & Sule, S. O. Effect of gum Arabic (Acacia senegal) on growth performance, carcass quality and health of Clarias gariepinus juveniles. J. Med. Vet. 7, 163–76 (2024).

Article 

Google Scholar 

Yousefi, M., NaderiFarsani, M., Ghafarifarsani, H. & Raeeszadeh, M. Dietary Lactobacillus helveticus and gum Arabic improves growth indices, digestive enzyme activities, intestinal microbiota, innate immunological parameters, antioxidant capacity, and disease resistance in common carp. Fish Shellfish Immunol. 135, 108652 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Verbraecken, J., Van De Heyning, P., De Backer, W. & Van Gaal, L. Body surface area in normal-weight, overweight, and obese adults: A comparison study. Metabolism 55, 515–524 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Liu, L., Huh, J. R. & Shah, K. Microbiota and the gut–brain axis: Implications for new therapeutic design in the CNS. EBioMedicine 77, 103908 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Simpson, C. A. et al. The gut microbiota in anxiety and depression—A systematic review. Clin. Psychol. Rev. 83, 101943 (2021).

Article 
PubMed 

Google Scholar 

Yakmaz, F., Bozkurt, A. S. & Görücü Yilmaz, Ş. PTZ-kindled rat model; evaluation of seizure, hippocampal EGR-1, and Rev-erbα gene regulation, behavioral analysis, and antioxidant capacity of gum Arabic. Mol. Biol. Rep. 51, 279 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Cai, Y., Folkerts, J., Folkerts, G., Maurer, M. & Braber, S. Microbiota-dependent and -independent effects of dietary fibre on human health. Br. J. Pharmacol. 177, 1363–81 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Montagne, L., Pluske, J. R. & Hampson, D. J. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol. 108, 95–117 (2003).

Article 

Google Scholar 

Luan, Y. et al. The fish microbiota: Research progress and potential applications. Engineering 29, 137–46 (2023).

Article 
CAS 

Google Scholar 

Kim, Y. S., Unno, T., Kim, B. Y. & Park, M. S. Sex differences in gut microbiota. World J. Mens Health 38, 48–60 (2020).

Article 
PubMed 

Google Scholar 

Scepanovic, P. et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 7, 130 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Worsley, S. F. et al. Assessing the causes and consequences of gut mycobiome variation in a wild population of the Seychelles warbler. Microbiome 10, 242 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Liang, X., Bushman, F. D. & FitzGerald, G. A. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc. Natl Acad. Sci. USA 112, 10479–10484 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jaggar, M., Rea, K., Spichak, S., Dinan, T. G. & Cryan, J. F. You’ve got male: Sex and the microbiota–gut–brain axis across the lifespan. Front. Neuroendocrinol. 56, 100815 (2020).

Article 
PubMed 

Google Scholar 

Yan, R. et al. Effect of sex on the gut microbiota characteristics of passerine migratory birds. Front. Microbiol. 13, 917373 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Ma, Y. et al. Sex-dependent effects of silver nanoparticles on the zebrafish gut microbiota. Environ. Sci. Nano 5, 740–751 (2018).

Article 
CAS 

Google Scholar 

Chen, L. et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. Environ. Pollut. 240, 17–26 (2018).

Article 
CAS 
PubMed 

Google Scholar 

von Hofsten, J. & Olsson, P. E. Zebrafish sex determination and differentiation: Involvement of FTZ-F1 genes. Reprod. Biol. Endocrinol. 3, 63 (2005).

Article 

Google Scholar 

Martyniuk, C. J. et al. Sex-dependent host–microbiome dynamics in zebrafish: implications for toxicology and gastrointestinal physiology. Comp. Biochem. Physiol. D Genomics Proteomics 42, 100993 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Maritan, E., Quagliariello, A., Frago, E., Patarnello, T. & Martino, M. E. The role of animal hosts in shaping gut microbiome variation. Philos. Trans. R. Soc. B 379, 20230071 (2024).

Article 
CAS 

Google Scholar 

Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Liu, X. et al. Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175, 502-513.e13 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Moffett, J. R., Puthillathu, N., Vengilote, R., Jaworski, D. M. & Namboodiri, A. M. Acetate revisited: A key biomolecule at the nexus of metabolism, epigenetics and oncogenesis—Part 1: Acetyl-CoA, acetogenesis and acyl-CoA short-chain synthetases. Front. Physiol. 11, 580167 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Soliman, M. L., Puig, K. L., Combs, C. K. & Rosenberger, T. A. Acetate reduces microglia inflammatory signaling in vitro. J. Neurochem. 123, 555–567 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Dalile, B., Van Oudenhove, L., Vervliet, B. & Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 16, 461–478 (2019).

Article 
PubMed 

Google Scholar 

He, Q. et al. Acetate enables metabolic fitness and cognitive performance during sleep disruption. Cell Metab. 36, 1998–2014 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Polakof, S., Panserat, S., Soengas, J. L. & Moon, T. W. Glucose metabolism in fish: A review. J. Comp. Physiol. B 182, 1015–1045 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Luong, A. D., Roy, I., Malhotra, B. D. & Luong, J. H. T. Analytical and biosensing platforms for insulin: A review. Sens. Actuators Rep. 3, 100028 (2021).

Article 

Google Scholar 

Hernández, M. A. G., Canfora, E. E., Jocken, J. W. E. & Blaak, E. E. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients 11, 1943 (2019).

Article 
PubMed 

Google Scholar 

Byrne, C. S., Chambers, E. S., Morrison, D. J. & Frost, G. The role of short-chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. 39, 1331–1338 (2015).

Article 
CAS 

Google Scholar 

Zhang, H. et al. Effects of dietary sodium acetate on food intake, weight gain, intestinal digestive enzyme activities, energy metabolism and gut microbiota in cultured fish: Zebrafish as a model. Aquaculture 523, 735188 (2020).

Article 
CAS 

Google Scholar 

Liu, L., Liu, H., Fu, C., Li, C. & Li, F. Acetate induces anorexia via up-regulating the hypothalamic pro-opiomelanocortin (POMC) gene expression in rabbits. J. Anim. Feed Sci. 26, 266–273 (2017).

Google Scholar 

Sudo, N. The hypothalamic–pituitary–adrenal axis and gut microbiota: A target for dietary intervention? In The Gut-Brain Axis: Dietary, Probiotic, and Prebiotic Interventions on the Microbiota (ed. Sudo, N.) 293–304 (Elsevier, 2016).

Chapter 

Google Scholar 

Koylu, E. O., Balkan, B., Kuhar, M. J. & Pogun, S. Cocaine- and amphetamine-regulated transcript (CART) and the stress response. Peptides 27, 1956–1969 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Lee, H. B. et al. Key HPI axis receptors facilitate light adaptive behavior in larval zebrafish. Sci. Rep. 14, 7759 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nipu, N., Antomagesh, F., Faught, E. & Vijayan, M. M. Glucocorticoid receptor activation reduces food intake independent of hyperglycemia in zebrafish. Sci. Rep. 12, 15677 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bratusch-Marrain, P. R. Insulin-counteracting hormones: Their impact on glucose metabolism. Diabetologia 24, 74–79 (1983).

Article 
CAS 
PubMed 

Google Scholar 

Mathew, A. R. et al. Vitamin B12 deficiency and the nervous system: beyond metabolic decompensation—Comparing biological models and gaining new insights into molecular and cellular mechanisms. Int. J. Mol. Sci. 25, 590 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sloan, J. L. et al. The vitamin B12 processing enzyme, mmachc, is essential for zebrafish survival, growth and retinal morphology. Hum. Mol. Genet. 29, 2109–2123 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Robea, M. A. et al. Vitamin B12 ameliorates pesticide-induced sociability impairment in zebrafish (Danio rerio): A prospective controlled intervention study. Animals 14, 405 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar 

Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar 

Schley, P. D. & Field, C. J. The immune-enhancing effects of dietary fibres and prebiotics. Br. J. Nutr. 87, S221–S230 (2002).

Article 
CAS 
PubMed 

Google Scholar 

Xie, L., Alam, M. J., Marques, F. Z. & Mackay, C. R. A major mechanism for immunomodulation: dietary fibres and acid metabolites. Semin. Immunol. 66, 101737 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Ewart, K. V., Johnson, S. C. & Ross, N. W. Lectins of the innate immune system and their relevance to fish health. ICES J. Mar. Sci. 58, 380–385 (2001).

Article 
CAS 

Google Scholar 

Barkeer, S. et al. Gum acacia dietary fiber: Significance in immunomodulation, inflammatory diseases, and cancer. Phytother. Res. 38, 1509–1521 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Jasienska, G., Bribiescas, R. G., Furberg, A. S., Helle, S. & Núñez-de la Mora, A. Human reproduction and health: An evolutionary perspective. Lancet 390, 510–520 (2017).

Article 
PubMed 

Google Scholar 

Kosova, G., Abney, M. & Ober, C. Heritability of reproductive fitness traits in a human population. Proc. Natl Acad. Sci. USA 107, 1772–1778 (2010).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lin, Y. et al. Dietary fibre supplementation improves semen production by increasing Leydig cells and testosterone synthesis in a growing boar model. Front. Vet. Sci. 9, 850658 (2022).

Article 

Google Scholar 

Jarrett, S. & Ashworth, C. J. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 9, 59 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Gaskins, A. J. et al. Effect of daily fiber intake on reproductive function: The BioCycle Study. Am. J. Clin. Nutr. 90, 1061–1069 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gaskins, A. J., Mumford, S. L., Wactawski-Wende, J. & Schisterman, E. F. Effect of daily fiber intake on luteinizing hormone levels in reproductive-aged women. Eur. J. Nutr. 51, 249–253 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Salas-Huetos, A., Bulló, M. & Salas-Salvadó, J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: A systematic review of observational studies. Hum. Reprod. Update 23, 371–389 (2017).

Article 
PubMed 

Google Scholar 

Imbabi, T. A. et al. Enhancing semen quality, brain neurotransmitters, and antioxidant status of rabbits under heat stress by acacia gum, vitamin C, and lycopene as dietary supplements: An in vitro and in silico study. Ital. J. Anim. Sci. 22, 321–336 (2023).

Article 
CAS 

Google Scholar 

Nofal, A. E., Okdah, Y. A., Rady, M. I. & Hassaan, H. Z. Gum acacia attenuates cisplatin toxic effect: Spermatogenesis dysfunction and infertility in rats. Int. J. Biol. Macromol. 240, 124292 (2023).

Article 
CAS 
PubMed 

Google Scholar 

Mohamed, R. I., Daoud, I. M., Suliman, A. G. & Kaddam, L. Effect of prebiotic dietary supplement Acacia senegal on hormonal and metabolic markers in polycystic ovary syndrome patients: A pilot study. Cureus (2023).

Nasir, O. et al. Comparative efficacy of gum Arabic (Acacia senegal) and Tribulus terrestris on male fertility. Saudi Pharm. J. 28, 1791–1796 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Willis, S. K. et al. Glycemic load, dietary fiber, and added sugar and fecundability in two preconception cohorts. Am. J. Clin. Nutr. 112, 27–38 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chang, J. et al. Revealing the mechanism of fibre promoting sow embryo implantation by altering the abundance of uterine fluid proteins: A proteomic perspective. J. Proteomics 297, 105123 (2024).

Article 
CAS 
PubMed 

Google Scholar 

Zhang, J. et al. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut–brain axis. mSystems 4, 10–128 (2019).

Article 

Google Scholar 

Wang, Y. & Xie, Z. Exploring the role of gut microbiome in male reproduction. Andrology 10, 441–450 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Hu, Y. et al. Chicory fibre improves reproductive performance of pregnant rats involving altering intestinal microbiota composition. J. Appl. Microbiol. 129, 1693–1705 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. 83, 13–34 (2008).

Article 
PubMed 

Google Scholar 

Marques, J. C., Li, M., Schaak, D., Robson, D. N. & Li, J. M. Internal state dynamics shape brainwide activity and foraging behaviour. Nature 577, 239–243 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar 

Filosa, A., Barker, A. J., Dal Maschio, M. & Baier, H. Feeding state modulates behavioral choice and processing of prey stimuli in the zebrafish tectum. Neuron 90, 596–608 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Nishio, S.-I. et al. Fasting induces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner. Mol. Endocrinol. 26, 1316–1326 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Volkoff, H. The neuroendocrine regulation of food intake in fish: A review of current knowledge. Front. Neurosci. 10, 540 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Guillot, R. et al. Behind melanocortin antagonist overexpression in the zebrafish brain: A behavioral and transcriptomic approach. Horm. Behav. 82, 87–100 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Maklakov, A. A. & Immler, S. The expensive germline and the evolution of ageing. Curr. Biol. 26, R577–R586 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Leibold, S. & Hammerschmidt, M. Long-term hyperphagia and caloric restriction caused by low- or high-density husbandry have differential effects on zebrafish postembryonic development, somatic growth, fat accumulation and reproduction. PLoS One 10, e0120776 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Merrill, L. & Collins, P. M. Environment-specific and sex-specific allocation strategies among gonadal, somatic, and immune indices in a marine fish. Can. J. Zool. 93, 207–212 (2015).

Article 

Google Scholar 

Cachat, J. et al. Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat. Protoc. 5, 1786–1799 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Evans, C. E. L. Dietary fibre and cardiovascular health: A review of current evidence and policy. Proc. Nutr. Soc. 79, 61–67 (2020).

Article 
PubMed 

Google Scholar 

Mortensen, A. et al. Re-evaluation of xanthan gum (E 415) as a food additive. EFSA J. 15, e04909 (2017).

PubMed 
PubMed Central 

Google Scholar 

Stephen, A. M. et al. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 30, 149–190 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Watts, S. A. & D’Abramo, L. R. Standardized reference diets for zebrafish: Addressing nutritional control in experimental methodology. Annu. Rev. Nutr. 41, 511–527 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Watts, S. A., Powell, M. & D’Abramo, L. R. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 53, 144–160 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Fowler, L. A., Williams, M. B., D’Abramo, L. R. & Watts, S. A. Zebrafish nutrition—moving forward. In The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (ed. Fowler, L. A.) 379–401 (Elsevier, 2019).

Google Scholar 

Leigh, S. C., Nguyen-Phuc, B. Q. & German, D. P. The effects of protein and fiber content on gut structure and function in zebrafish (Danio rerio). J. Comp. Physiol. B 188, 237–253 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Hillman, C., Cooper, A. H., Ram, P. & Parker, M. O. The effect of laboratory diet and feeding on growth parameters in juvenile zebrafish. Lab Anim. (NY) 53, 327–335 (2024).

Article 
PubMed 

Google Scholar 

Genario, R., de Abreu, M. S., Giacomini, A. C. V. V., Demin, K. A. & Kalueff, A. V. Sex differences in behavior and neuropharmacology of zebrafish. Eur. J. Neurosci. 52, 2586–2603 (2020).

Article 
PubMed 

Google Scholar 

Adhish, M. & Manjubala, I. Effectiveness of zebrafish models in understanding human diseases—A review of models. Heliyon 9, e14557 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chia, K., Klingseisen, A., Sieger, D. & Priller, J. Zebrafish as a model organism for neurodegenerative disease. Front. Mol. Neurosci. 15, 940484 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kalueff, A. V., Stewart, A. M. & Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35, 63–75 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xia, H. et al. Zebrafish: An efficient vertebrate model for understanding role of gut microbiota. Mol. Med. 28, 161 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Frederickson, S. C. et al. Comparison of juvenile feed protocols on growth and spawning in zebrafish. J. Am. Assoc. Lab. Anim. Sci. 60, 298–305 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Purushothaman, K. et al. Protocol for feeding strategy and proteomics analysis of zebrafish Danio rerio using S-trap and iTRAQ techniques. STAR Protoc. 5, 103513 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pesti, G. M. A new analytical procedure to replace the outdated Weende proximal feed ingredient analysis paradigm is long overdue. Anim. Prod. Sci. 64, (2024).

Aleström, P. et al. Zebrafish: Housing and husbandry recommendations. Lab Anim. 54, 213–224 (2020).

Article 
PubMed 

Google Scholar 

Lawrence, C. Zebrafish larviculture. In The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (ed. Lawrence, C.) 365–378 (Elsevier, 2019).

Google Scholar 

Van Stappen, G., Sorgeloos, P. & Rombaut, G. (eds.) Manual on Artemia production and use. FAO Fisheries and Aquaculture Technical Paper No. 702 (FAO, Rome, 2024). https://doi.org/10.4060/cd0313en

Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 269, 1–20 (2007).

Article 

Google Scholar 

Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Le Gall, G. Sample collection and preparation of biofluids and extracts for NMR spectroscopy. In Metabonomics: Methods and Protocols (ed. Bjerrum, J. T.) 1277, 15–28 (2015).

Weljie, A. M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C. M. Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Anal. Chem. 78, 4430–4442 (2006).

Article 
CAS 
PubMed 

Google Scholar 

Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras, F. J. H. & de Polavieja, G. G. idtracker.ai: Tracking all individuals in small or large collectives of unmarked animals. Nat. Methods 16, 179–182 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar 

Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

Article 

Google Scholar 

Abi Assaf, J. A., et al. Gum Arabic (Acacia senegal) enhances reproduction and modulates the microbiota-gut-brain axis of zebrafish in a sex-specific and dosage-dependent manner. Preprint at https://doi.org/10.1101/2024.10.04.616708 (2024).



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
claudio
  • Website

Related Posts

Los entrenadores de fitness de celebridades revelan cómo las estrellas de Bollywood mantienen su ajuste durante las duras sesiones de cine: “Serán estrictos …”

octubre 5, 2025

Saif Ali Khan’s Fitness Secret: cómo las paradas de mano y el retroceso lo mantienen fuerte a los 55 | Noticias de la película hindi

octubre 5, 2025

Dos amigos de la escuela secundaria proporcionan una comunidad construida en la salud al área de lectura.

octubre 5, 2025

Peloton lanza la línea de acondicionamiento físico comercial “Pro Series”, incluida su primera cinta de correr comercial

octubre 4, 2025

“Juega en casa sin Ashwin”: Jadeha sobre dominación india, fitness y futuras estrellas | Noticias de cricket

octubre 4, 2025

Peloton da una transformación a todas las líneas de equipos de acondicionamiento físico y me encanta

octubre 4, 2025
Leave A Reply Cancel Reply

Últimas publicaciones

Madison Vegan Fest atrae a diversas multitudes para celebrar un estilo de vida basado en plantas | Noticias

octubre 5, 2025

De las bombas de buscapersonas a la política de poder: los cálculos inacabados del Líbano

octubre 5, 2025

El cierre significaba que no había informe de trabajo. Esto es lo que dije sobre la economía

octubre 5, 2025

Wadehull de Alemania planea viajar a Israel después de visitar la costa del Golfo

octubre 5, 2025
Sobre nosotros
Sobre nosotros

Bienvenidos a Tiempo Journal, tu fuente confiable para información actualizada sobre los temas que más te apasionan. En nuestro sitio, ofrecemos una amplia variedad de contenido sobre Deportes, Política, Turismo y Viajes, Estilo de Vida y mucho más. Nuestro compromiso es proporcionarte información de calidad, analizada desde diferentes perspectivas y en un formato accesible para todos.

Últimas publicaciones

Madison Vegan Fest atrae a diversas multitudes para celebrar un estilo de vida basado en plantas | Noticias

octubre 5, 2025

De las bombas de buscapersonas a la política de poder: los cálculos inacabados del Líbano

octubre 5, 2025

El cierre significaba que no había informe de trabajo. Esto es lo que dije sobre la economía

octubre 5, 2025

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

© 2025 tiempojournal. Designed by tiempojournal.
  • Home
  • Advertise us
  • Contact us
  • DMCA
  • Política de Privacidad
  • Sobre Nosotros
  • Términos y Condiciones

Type above and press Enter to search. Press Esc to cancel.