Wotzka, S. Y., Nguyen, B. D. & Hardt, W. D. Salmonella typhimurium diarrhea reveals basic principles of enteropathogen infection and disease-promoted DNA exchange. Cell Host Microbe 21, 443–454 (2017).
Google Scholar
Gan, J., Giogha, C. & Hartland, E. L. Molecular mechanisms employed by enteric bacterial pathogens to antagonise host innate immunity. Curr. Opin. Microbiol. 59, 58–64 (2021).
Google Scholar
Herzog, M. K.-M. et al. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 15, 2172667 (2023).
Google Scholar
Spiga, L. & Winter, S. E. Using enteric pathogens to probe the gut microbiota. Trends Microbiol. 27, 243–253 (2019).
Google Scholar
Collins, L. V., Attridge, S. & Hackett, J. Mutations at rfc or PMI attenuate Salmonella typhimurium virulence for mice. Infect. Immun. 59, 1079–1085 (1991).
Google Scholar
Vito, R., Dexian, Z., Christopher, T. & Piddock, L. J. V. The O-antigen epitope governs susceptibility to colistin in Salmonella enterica. mBio 11, e02831 (2020).
Qingke, K. et al. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica Serovar Typhimurium. Infect. Immun. 79, 4227–4239 (2011).
Google Scholar
Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).
Google Scholar
Diard, M. et al. A rationally designed oral vaccine induces immunoglobulin A in the murine gut that directs the evolution of attenuated Salmonella variants. Nat. Microbiol. 6, 830–841 (2021).
Google Scholar
Sturm, A. et al. The cost of virulence: retarded growth of Salmonella typhimurium cells expressing type III secretion system 1. PLoS Pathog. 7, e1002143 (2011).
Google Scholar
Sobota, M. et al. The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella typhimurium. PLoS Biol. 20, e3001608 (2022).
Google Scholar
Diard, M. M. et al. Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494, 353–356 (2013).
Google Scholar
Gül, E. et al. The microbiota conditions a gut milieu that selects for wild-type Salmonella typhimurium virulence. PLoS Biol. 21, e3002253 (2023).
Google Scholar
Chaban, B., Hughes, H. V. & Beeby, M. The flagellum in bacterial pathogens: for motility and a whole lot more. Semin. Cell Dev. Biol. 46, 91–103 (2015).
Google Scholar
Duan, Q., Zhou, M., Zhu, L. & Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 53, 1–8 (2013).
Google Scholar
Clasen, S. J. et al. Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci. Immunol. 8, eabq7001 (2023).
Google Scholar
Cummings, L. A., Wilkerson, W. D., Bergsbaken, T. & Cookson, B. T. In vivo, fliC expression by Salmonella enterica Serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 61, 795–809 (2006).
Google Scholar
Imke, S. et al. Regulation of flagellum biosynthesis in response to cell envelope stress in Salmonella enterica Serovar Typhimurium. mBio 9, https://doi.org/10.1128/mbio.00736-17 (2018).
Garima, B., Mostafa, G., Sears, K. T., Galen, J. E. & Tennant. S. M. Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. EcoSal Plus 0, eesp-0004-2023 (2024).
Takaya, A., Yamamoto, T. & Tokoyoda, K. Humoral immunity vs. Salmonella. Front. Immunol. 10, 3155 (2020).
Baliban, S. M., Lu, Y.-J. & Malley, R. Overview of the nontyphoidal and paratyphoidal Salmonella vaccine pipeline: current status and future prospects. Clin. Infect. Dis. 71, S151–S154 (2020).
Google Scholar
Sears, K. T., Galen, J. E. & Tennant, S. M. Advances in the development of Salmonella‐based vaccine strategies for protection against Salmonellosis in humans. J. Appl. Microbiol. 131, 2640–2658 (2021).
Google Scholar
Lentsch, V. et al. “EvoVax” – A rationally designed inactivated Salmonella typhimurium vaccine induces strong and long-lasting immune responses in pigs. Vaccine 41, 5545–5552 (2023).
Google Scholar
Chen, P. & Zhang, J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat. Ecol. Evol. 4, 461–469 (2020).
Google Scholar
Cooper, V. S. & Lenski, R. E. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407, 736–739 (2000).
Google Scholar
MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl. Acad. Sci. USA 101, 8072–8077 (2004).
Google Scholar
Cherry, J. L. Selection-driven gene inactivation in Salmonella. Genome Biol. Evol. 12, 18–34 (2020).
Google Scholar
Horstmann, J. A. et al. Methylation of Salmonella typhimurium flagella promotes bacterial adhesion and host cell invasion. Nat. Commun. 11, 2013 (2020).
Google Scholar
Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).
Google Scholar
Hengge, R., Larson, T. J. & Boos, W. sn-Glycerol-3-phosphate transport in Salmonella typhimurium. J. Bacteriol. 155, 186–195 (1983).
Google Scholar
Lin, E. C. C. Glycerol dissimilation and its regulation in bacteria. Ann. Rev. Microbiol. 30, 535–578 (1976).
Hayashi, S., Koch, J. P. & Lin, E. C. Active transport of l-α-glycerophosphate in Escherichia coli. J. Biol. Chem. 239, 3098–3105 (1964).
Google Scholar
Lemieux, M. J., Huang, Y. & Wang, D.-N. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res. Microbiol. 155, 623–629 (2004).
Google Scholar
Xavier, K. B., Kossmann, M., Santos, H. & Boos, W. Kinetic analysis by in vivo 31P nuclear magnetic resonance of internal Pi during the uptake of sn-glycerol-3-phosphate by the pho regulon-dependent Ugp system and the glp regulon-dependent GlpT system. J. Bacteriol. 177, 699–704 (1995).
Google Scholar
Steeb, B. et al. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog. 9, e1003301 (2013).
Google Scholar
Maloney, P. C., Ambudkar, S. V., Anatharam, V., Sonna, L. A. & Varadhachary, A. Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54, 1–17 (1990).
Google Scholar
Bruna, R. E., Kendra, C. G. & Pontes, M. H. Phosphorus starvation response and PhoB-independent utilization of organic phosphate sources by Salmonella enterica. Microbiol. Spectr. 0, e02260–23 (2023).
Konings, W. N. & Rosenberg, H. Phosphate transport in membrane vesicles from Escherichia coli. Biochim. Biophys. Acta 508, 370–378 (1978).
Google Scholar
Rosenberg, H., Gerdes, R. G. & Chegwidden, K. Two systems for the uptake of phosphate in Escherichia coli. J. Bacteriol. 131, 505–511 (1977).
Google Scholar
Van Veen, H. W., Abee, T., Kortstee, G. J. J., Konings, W. N. & Zehnder, A. J. B. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33, 1766–1770 (1994).
Google Scholar
Bruna, R. E., Kendra, C. G., Groisman, E. A. & Pontes, M. H. Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis. Proc. Natl. Acad. Sci. USA 118, e2021370118 (2021).
Google Scholar
Motomura, K. et al. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol. Lett. 320, 25–32 (2011).
Google Scholar
Bruna, R. E., Kendra, C. G. & Pontes, M. H. An intracellular phosphorus-starvation signal activates the PhoB/PhoR two-component system in Salmonella enterica. mBio 0, e01642–24 (2024).
Spiga, L. et al. An oxidative central metabolism enables Salmonella to utilize microbiota-derived succinate. Cell Host Microbe 22, 291–301.e6 (2017).
Google Scholar
Nguyen, B. D. et al. Import of aspartate and malate by DcuABC drives H2/fumarate respiration to promote initial salmonella gut-lumen colonization in mice. Cell Host Microbe 27, 922–936.e6 (2020).
Google Scholar
Knöpfel, T. et al. Paracellular transport of phosphate along the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G233–G241 (2019).
Google Scholar
McClure, S. T., Chang, A. R., Selvin, E., Rebholz, C. M. & Appel, L. J. Dietary sources of phosphorus among adults in the United States: results from NHANES 2001–2014. Nutrients 9, 95 (2017).
Davis, G. R. et al. Absorption of phosphate in the jejunum of patients with chronic renal failure before and after correction of vitamin D deficiency. Gastroenterology 85, 908–916 (1983).
Google Scholar
Hwan Baek, J. & Yup Lee, S. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264, 104–109 (2006).
Google Scholar
Rong, G. & Stock, A. M. Quantitative kinetic analyses of shutting off a two-component system. mBio 8, e00412 (2017).
Google Scholar
Hall, J. A. & Maloney, P. C. Altered oxyanion selectivity in mutants of UhpT, the Pi -linked sugar phosphate carrier of Escherichia coli*. J. Biol. Chem. 280, 3376–3381 (2005).
Google Scholar
Röder, J., Felgner, P. & Hensel, M. Single-cell analyses reveal phosphate availability as critical factor for nutrition of Salmonella enterica within mammalian host cells. Cell Microbiol. 23, e13374 (2021).
Google Scholar
Gardner, S. G., Johns, K. D., Tanner, R. & McCleary, W. R. The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J. Bacteriol. 196, 1741–1752 (2014).
Google Scholar
Bumann, D. & Schothorst, J. Intracellular Salmonella metabolism. Cell Microbiol. 19, e12766 (2017).
Google Scholar
Grant, A. J. et al. Modelling within-host spatiotemporal dynamics of invasive bacterial disease. PLoS Biol. 6, e74 (2008).
Google Scholar
Daniel, B. B. J. et al. Assessing microbiome population dynamics using wild-type isogenic standardized hybrid (WISH)-tags. Nat. Microbiol. 9, 1103–1116 (2024).
Wuttge, S. et al. Determinants of substrate specificity and biochemical properties of the sn-glycerol-3-phosphate ATP binding cassette transporter (UgpB–AEC2) of Escherichia coli. Mol. Microbiol. 86, 908–920 (2012).
Google Scholar
Sweet, G. et al. Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpF product. J. Bacteriol. 172, 424 LP–430 (1990).
Hopper, D. J. & Cooper, R. A. The purification and properties of Escherichia coli methylglyoxal synthase. Biochem. J. 128, 321–329 (1972).
Google Scholar
Subedi, K. P., Kim, I., Kim, J., Min, B. & Park, C. Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. FEMS Microbiol. Lett. 279, 180–K187 (2008).
Google Scholar
Lowry, O. H., Carter, J., Ward, J. B. & Glaser, L. The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. J. Biol. Chem. 246, 6511–6521 (1971).
Google Scholar
Kant, S., Liu, L. & Vazquez-Torres, A. The methylglyoxal pathway is a sink for glutathione in Salmonella experiencing oxidative stress. PLoS Pathog. 19, e1011441 (2023).
Google Scholar
Hopper, D. J. & Cooper, R. A. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett. 13, 213–216 (1971).
Google Scholar
Ozyamak, E. et al. The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli. Mol. Microbiol. 78, 1577–1590 (2010).
Google Scholar
Lee, C., Kim, I. & Park, C. Glyoxal detoxification in Escherichia coli K-12 by NADPH dependent aldo-keto reductases. J. Microbiol. 51, 527–530 (2013).
Google Scholar
Hapfelmeier, S. et al. The salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella Serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J. Immunol. 174, 1675–1685 (2005).
Google Scholar
Stecher, B. et al. Salmonella enterica Serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, e244 (2007).
Google Scholar
Li, W. et al. Strategies adopted by Salmonella to survive in host: a review. Arch. Microbiol. 205, 362 (2023).
Google Scholar
Fattinger, S. A., Sellin, M. E. & Hardt, W.-D. Salmonella effector driven invasion of the gut epithelium: breaking in and setting the house on fire. Curr. Opin. Microbiol. 64, 9–18 (2021).
Google Scholar
Gül, E. et al. Salmonella T3SS-2 virulence enhances gut-luminal colonization by enabling chemotaxis-dependent exploitation of intestinal inflammation. Cell Rep. 43, 113925 (2024).
Google Scholar
Zhang, H. et al. YaeB, expressed in response to the acidic pH in macrophages, promotes intracellular replication and virulence of Salmonella typhimurium. Int. J. Mol. Sci. 20, 4339 (2019).
Koumakis, E. et al. Novel function of PiT1/SLC20A1 in LPS-related inflammation and wound healing. Sci. Rep. 9, 1–15 (2019).
Google Scholar
Pang, Y. et al. Bladder epithelial cell phosphate transporter inhibition protects mice against uropathogenic Escherichia coli infection. Cell Rep. 39, 110698 (2022).
Google Scholar
Yang, W. et al. Phosphate (Pi) transporter PIT1 induces Pi starvation in Salmonella-containing vacuole in HeLa cells. Int. J. Mol. Sci. 24, 17216 (2023).
Google Scholar
Stamp, A. L. et al. Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase. Protein Sci. 19, 1897–1905 (2010).
Google Scholar
MacLean, M. J., Ness, L. S., Ferguson, G. P. & Booth, I. R. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol. Microbiol. 27, 563–571 (1998).
Google Scholar
Clugston, S. L. et al. Isolation and sequencing of a gene coding for glyoxalase I activity from Salmonella typhimurium and comparison with other glyoxalase I sequences. Gene 186, 103–111 (1997).
Google Scholar
Maier, L. et al. Granulocytes impose a tight bottleneck upon the gut luminal pathogen population during Salmonella typhimurium colitis. PLoS Pathog. 10, e1004557 (2014).
Google Scholar
Chong, A. et al. Cytosolic replication in epithelial cells fuels intestinal expansion and chronic fecal shedding of Salmonella typhimurium. Cell Host Microbe 29, 1177–1185.e6 (2021).
Google Scholar
Bakkeren, E. et al. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature 573, 276–280 (2019).
Google Scholar
MacDonald, K. P. A. et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116, 3955–3963 (2010).
Google Scholar
Hausmann, A. et al. Intercrypt sentinel macrophages tune antibacterial NF-κB responses in gut epithelial cells via TNF. J. Exp. Med. 218, e20210862 (2021).
Google Scholar
Arnold, I. C. et al. CD11c+ monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunol. 9, 352–363 (2016).
Google Scholar
Ducarmon, Q. R. et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 83, e00007-19 (2019).
Ambudkar, S. V., Larson, T. J. & Maloney, P. C. Reconstitution of sugar-phosphate transport systems of Escherichia coli. J. Biol. Chem. 261, 9083–9086 (1986).
Google Scholar
Willsky, G. R. & Malamy, M. H. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J. Bacteriol. 144, 356–365 (1980).
Google Scholar
Harris, R. M., Webb, D. C., Howitt, S. M. & Cox, G. B. Characterization of PitA and PitB from Escherichia coli. J. Bacteriol. 183, 5008–5014 (2001).
Google Scholar
Stecher, B. B. & Hardt, W.-D. D. Mechanisms controlling pathogen colonization of the gut. Curr. Opin. Microbiol. 14, 82–91 (2011).
Google Scholar
Pontes, M. H., Sevostyanova, A. & Groisman, E. A. When too much ATP is bad for protein synthesis. J. Mol. Biol. 427, 2586–2594 (2015).
Google Scholar
Lee, E. J., Pontes, M. H. & Groisman, E. A. A bacterial virulence protein promotes pathogenicity by inhibiting the bacterium’s own F1Fo ATP synthase. Cell 154, 146–156 (2013).
Google Scholar
Thauer, R. K., Jungermann, K. & Decker, K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977).
Google Scholar
Kadner, R. J., Murphy, G. P. & Stephens, C. M. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. J. Gen. Microbiol. 138, 2007–2014 (1992).
Google Scholar
McMeechan, A. et al. Inactivation of ppk differentially affects virulence and disrupts ATP homeostasis in Salmonella enterica serovars Typhimurium and Gallinarum. Res. Microbiol. 158, 79–85 (2007).
Google Scholar
Wang, H. et al. Hyperphosphatemia rather than hypophosphatemia indicates a poor prognosis in patients with sepsis. Clin. Biochem. 91, 9–15 (2021).
Google Scholar
Nan, W., Huang, Q., Wan, J. & Peng, Z. Association of serum phosphate and changes in serum phosphate with 28-day mortality in septic shock from MIMIC-IV database. Sci. Rep. 13, 21869 (2023).
Google Scholar
Livermore, D. M. et al. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline. Int. J. Antimicrob. Agents 37, 415–419 (2011).
Google Scholar
Falagas, M. E., Kastoris, A. C., Kapaskelis, A. M. & Karageorgopoulos, D. E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect. Dis. 10, 43–50 (2010).
Google Scholar
Monack, D. M., Raupach, B., Hromockyj, A. E. & Falkow, S. Salmonella typhimurium invasion induces apoptosis in infected macrophages. Proc. Natl. Acad. Sci. USA 93, 9833–9838 (1996).
Google Scholar
Chen, L. M., Kaniga, K. & Galán, J. E. Salmonella spp. are cytotoxic for cultured macrophages. Mol. Microbiol. 21, 1101–1115 (1996).
Google Scholar
Pokorzynski, N. D. & Groisman, E. A. How bacterial pathogens coordinate appetite with virulence. Microbiol. Mol. Biol. Rev. 87, e00198–22 (2023).
Google Scholar
Eylert, E. et al. Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol. Microbiol. 69, 1008–1017 (2008).
Google Scholar
Burton, N. A. et al. Disparate impact of oxidative host defenses determines the fate of salmonella during systemic infection in mice. Cell Host Microbe 15, 72–83 (2014).
Google Scholar
Choi, S. et al. The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages. Nat. Commun. 10, 1–14 (2019).
Google Scholar
Diard, M. et al. Antibiotic treatment selects for cooperative virulence of Salmonella typhimurium. Curr. Biol. 24, 2000–2005 (2014).
Google Scholar
Lenski, R. E. & Levin, B. R. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Nat. 125, 585–602 (1985).
Google Scholar
Lenski, R. E. Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus t4. Evolution 42, 425–432 (1988).
Google Scholar
Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003).
Google Scholar
De Paepe, M. et al. Trade-off between bile resistance and nutritional competence drives Escherichia coli diversification in the mouse gut. PLoS Genet. 7, e1002107 (2011).
Google Scholar
Sousa, A. et al. Recurrent reverse evolution maintains polymorphism after strong bottlenecks in commensal gut bacteria. Mol. Biol. Evol. 34, 2879–2892 (2017).
Google Scholar
Cherrak, Y. et al. Non-canonical start codons confer context-dependent advantages in carbohydrate utilization for commensal E. coli in the murine gut. Nat. Microbiol. 9, 2696–2709 (2024).
Hoiseth, S. K. & Stocker, B. A. D. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239 (1981).
Google Scholar
Schubert, C. et al. Monosaccharides drive salmonella gut colonization in a context-dependent manner. bioRxiv 2024.08.06.606610 https://doi.org/10.1101/2024.08.06.606610 (2024).
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).
Google Scholar
Sternberg, N. L. & Maurer, R. B. T.-M. in E. (2) Bacteriophage-mediated generalized transduction in Escherichia coli and Salmonella typhimurium. in Bacterial Genetic Systems, Vol. 204 18–43 (Academic Press, 1991).
Porwollik, S. et al. Defined single-gene and multi-gene deletion mutant collections in Salmonella enterica sv Typhimurium. PLoS ONE 9, e99820 (2014).
Google Scholar
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
Google Scholar
Liebisch, G. et al. Quantification of fecal short chain fatty acids by liquid chromatography tandem mass spectrometry—investigation of pre-analytic stability. Biomolecules 9, 121 (2019).
Oberg, N., Zallot, R. & Gerlt, J. A. EFI-EST, EFI-GNT, and EFI-CGFP: enzyme function initiative (EFI) web resource for genomic enzymology tools. J. Mol. Biol. 435, 168018 (2023).
Google Scholar
Zallot, R., Oberg, N. & Gerlt, J. A. The EFI Web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
Google Scholar
Diard, M. et al. Inflammation boosts bacteriophage transfer between Salmonella spp. Science 355, 1211–1215 (2017).
Google Scholar
Tran, K. T., Maeda, T., Sanchez-Torres, V. & Wood, T. K. Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol. Appl. Microbiol. Biotechnol. 99, 2573–2581 (2015).