Close Menu
Tiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
¿Qué está de moda?

Los puntajes de lectura de primavera muestran ganancias significativas, casi el 71% en el nivel de grado

julio 20, 2025

Tracker de selección de segunda ronda del draft de la NFL: los Saints QB Tyler Shaff se unen a la lista en expansión de jugadores y firman el trato

julio 20, 2025

Gen Z Stare: Por qué los trabajadores jóvenes son virales con looks en blanco

julio 20, 2025
Facebook X (Twitter) Instagram
Tiempo JournalTiempo Journal
  • Home
  • Business
  • Educación
  • Entretenimiento
  • Fitness
  • Política
    • Social
  • Deportes
  • Tecnología
    • Turismo
Tiempo Journal
Home » Cardiorespiratory fitness after correction of pectus excavatum: a systematic review with meta-analysis
Fitness

Cardiorespiratory fitness after correction of pectus excavatum: a systematic review with meta-analysis

claudioBy claudiojulio 19, 2025No hay comentarios14 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email


Krasopoulos, G., Dusmet, M., Ladas, G. & Goldstraw, P. Nuss procedure improves the quality of life in young male adults with pectus excavatum deformity. Eur. J. Cardiothorac. Surg. 29 (1), 1–5 (2006).

PubMed 

Google Scholar 

Lawson, M. L. et al. A pilot study of the impact of surgical repair on disease-specific quality of life among patients with pectus excavatum. J. Pediatr. Surg. 38 (6), 916–918 (2003).

PubMed 

Google Scholar 

Roberts, J., Hayashi, A., Anderson, J. O., Martin, J. M. & Maxwell, L. L. Quality of life of patients who have undergone the Nuss procedure for pectus excavatum: preliminary findings. J. Pediatr. Surg. 38 (5), 779–783 (2003).

PubMed 

Google Scholar 

Tardy, M. M. et al. Exercise cardiac output limitation in pectus excavatum. J. Am. Coll. Cardiol. 66 (8), 976–977 (2015).

PubMed 

Google Scholar 

Rodriguez-Granillo, G. A. et al. Impact of pectus excavatum on cardiac morphology and function according to the site of maximum compression: Effect of physical exertion and respiratory cycle. Eur. Heart J. Cardiovasc. Imaging. 21 (1), 77–84 (2020).

PubMed 

Google Scholar 

Abu-Tair, T. et al. Impact of pectus excavatum on cardiopulmonary function. Ann. Thorac. Surg. 105 (2), 455–460 (2018).

PubMed 

Google Scholar 

Obermeyer, R. J., Cohen, N. S. & Jaroszewski, D. E. The physiologic impact of pectus excavatum repair. Semin Pediatr. Surg. 27 (3), 127–132 (2018).

PubMed 

Google Scholar 

Swanson, J. W. et al. Correlating Haller index and cardiopulmonary disease in pectus excavatum. Am. J. Surg. 203 (5), 660–664 (2012).

PubMed 

Google Scholar 

Maagaard, M. & Heiberg, J. Improved cardiac function and exercise capacity following correction of pectus excavatum: A review of current literature. Ann. Cardiothorac. Surg. 5 (5), 485–492 (2016).

PubMed 
PubMed Central 

Google Scholar 

Coln, E., Carrasco, J. & Coln, D. Demonstrating relief of cardiac compression with the Nuss minimally invasive repair for pectus excavatum. J. Pediatr. Surg. 41 (4), 683–686 (2006). discussion – 6.

PubMed 

Google Scholar 

Kelly, R. E. Jr. et al. Surgical repair of pectus excavatum markedly improves body image and perceived ability for physical activity: multicenter study. Pediatrics 122 (6), 1218–1222 (2008).

PubMed 

Google Scholar 

Lomholt, J. J., Jacobsen, E. B., Thastum, M. & Pilegaard, H. A prospective study on quality of life in youths after pectus excavatum correction. Ann. Cardiothorac. Surg. 5 (5), 456–465 (2016).

PubMed 
PubMed Central 

Google Scholar 

Jeong, J. Y., Park, H. J., Lee, J., Park, J. K. & Jo, K. H. Cardiac morphologic changes after the Nuss operation for correction of pectus excavatum. Ann. Thorac. Surg. 97 (2), 474–478 (2014).

PubMed 

Google Scholar 

Lawson, M. L. et al. Impact of pectus excavatum on pulmonary function before and after repair with the Nuss procedure. J. Pediatr. Surg. 40 (1), 174–180 (2005).

PubMed 

Google Scholar 

Maagaard, M. et al. Normalized cardiopulmonary exercise function in patients with pectus excavatum three years after operation. Ann. Thorac. Surg. 96 (1), 272–278 (2013).

PubMed 

Google Scholar 

Malek, M. H. et al. Cardiovascular function following surgical repair of pectus excavatum: A metaanalysis. Chest 130 (2), 506–516 (2006).

PubMed 

Google Scholar 

Redlinger, R. E. Jr. et al. Regional chest wall motion dysfunction in patients with pectus excavatum demonstrated via optoelectronic plethysmography. J. Pediatr. Surg. 46 (6), 1172–1176 (2011).

PubMed 

Google Scholar 

Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public. Health Rep. 100 (2), 126–131 (1985).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Das, B. B., Recto, M. R. & Yeh, T. Improvement of cardiopulmonary function after minimally invasive surgical repair of pectus excavatum (Nuss procedure) in children. Ann. Pediatr. Cardiol. 12 (2), 77–82 (2019).

PubMed 
PubMed Central 

Google Scholar 

Borowitz, D. et al. Pulmonary function and exercise response in patients with pectus excavatum after Nuss repair. J. Pediatr. Surg. 38 (4), 544–547 (2003).

PubMed 

Google Scholar 

Cebeci, H. et al. The effect of pectus excavatum deformity on lung volume: Fact or myth? Surg. Radiol. Anat. 42 (11), 1287–1292 (2020).

PubMed 

Google Scholar 

Raghuveer, G. et al. Cardiorespiratory fitness in youth: an important marker of health: A scientific statement from the American heart association. Circulation 142 (7), e101–e18 (2020).

PubMed 
PubMed Central 

Google Scholar 

Shephard, R. J. et al. The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull. World Health Organ. 38 (5), 757–764 (1968).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Ross, R. et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American heart association. Circulation 134 (24), e653–e99 (2016).

PubMed 

Google Scholar 

Coughlin, A. C. et al. When to nuss?? Patient age as a risk factor for complications of minimally invasive repair of pectus excavatum: A systematic review and meta-analysis. Pediatr. Surg. Int. 38 (3), 365–375 (2022).

PubMed 

Google Scholar 

Media, A. S. et al. Complication rates rise with age and Haller index in minimally invasive correction of pectus excavatum: A high-volume, single-center retrospective cohort study. J. Thorac. Cardiovasc. Surg. (2024).

Moher, D. et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4 (1), 1 (2015).

PubMed 
PubMed Central 

Google Scholar 

Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 372, n71 (2021).

PubMed 
PubMed Central 

Google Scholar 

Christopher, B., Cooper, M. A., Saleh, R., Elashoff, R. & Finn, J. P. Eric W. Fronkalsrud. Anatomical and physiological improvements following surgical correction of pectus excavatum: A prospective study. D42 Interventional Pulmonology and Thoracic Surgery 2010. p. A5841–A .

Poole, D. C. & Jones, A. M. Measurement of the maximum oxygen uptake V̇o(2max): V̇o(2peak) is no longer acceptable. J. Appl. Physiol. (1985). 122 (4), 997–1002 (2017).

CAS 
PubMed 

Google Scholar 

Thornton, A. & Lee, P. Publication bias in meta-analysis: Its causes and consequences. J. Clin. Epidemiol. 53 (2), 207–216 (2000).

CAS 
PubMed 

Google Scholar 

Haller, J. A. Jr. & Loughlin, G. M. Cardiorespiratory function is significantly improved following corrective surgery for severe pectus excavatum. Proposed treatment guidelines. J. Cardiovasc. Surg. (Torino). 41 (1), 125–130 (2000).

PubMed 

Google Scholar 

Wurtz, A. et al. Simplified open repair for anterior chest wall deformities. Analysis of results in 205 patients. Orthop. Traumatol. Surg. Res. 98 (3), 319–326 (2012).

CAS 
PubMed 

Google Scholar 

Bawazir, O. A., Montgomery, M., Harder, J. & Sigalet, D. L. Midterm evaluation of cardiopulmonary effects of closed repair for pectus excavatum. J. Pediatr. Surg. 40 (5), 863–867 (2005).

PubMed 

Google Scholar 

Sigalet, D. L., Montgomery, M. & Harder, J. Cardiopulmonary effects of closed repair of pectus excavatum. J. Pediatr. Surg. 38 (3), 380–385 (2003). discussion – 5.

PubMed 

Google Scholar 

Sigalet, D. L. et al. Long term cardiopulmonary effects of closed repair of pectus excavatum. Pediatr. Surg. Int. 23 (5), 493–497 (2007).

PubMed 

Google Scholar 

Al-Assiri, A. et al. Operative innovation to the Nuss procedure for pectus excavatum: Operative and functional effects. J. Pediatr. Surg. 44 (5), 888–892 (2009).

PubMed 

Google Scholar 

Tang, M. et al. Improved cardiopulmonary exercise function after modified Nuss operation for pectus excavatum. Eur. J. Cardiothorac. Surg. 41 (5), 1063–1067 (2012).

PubMed 

Google Scholar 

Ravanbakhsh, S. et al. Sex differences in objective measures of adult patients presenting for pectus excavatum repair. Ann. Thorac. Surg. 114 (4), 1159–1167 (2022).

PubMed 

Google Scholar 

Wynn, S. R. et al. Exercise cardiorespiratory function in adolescents with pectus excavatum. Observations before and after operation. J. Thorac. Cardiovasc. Surg. 99 (1), 41–47 (1990).

CAS 
PubMed 

Google Scholar 

Quigley, P. M., Haller, J. A. Jr., Jelus, K. L., Loughlin, G. M. & Marcus, C. L. Cardiorespiratory function before and after corrective surgery in pectus excavatum. J. Pediatr. 128 (5 Pt 1), 638–643 (1996).

CAS 
PubMed 

Google Scholar 

Jaroszewski, D. E. et al. Cardiopulmonary outcomes after the Nuss procedure in pectus excavatum. J. Am. Heart Assoc. 11 (7), e022149 (2022).

PubMed 
PubMed Central 

Google Scholar 

Neviere, R., Benhamed, L., Duva Pentiah, A. & Wurtz, A. Pectus excavatum repair improves respiratory pump efficacy and cardiovascular function at exercise. J. Thorac. Cardiovasc. Surg. 145 (2), 605–606 (2013).

PubMed 

Google Scholar 

O’Keefe, J. et al. Longer term effects of closed repair of pectus excavatum on cardiopulmonary status. J. Pediatr. Surg. 48 (5), 1049–1054 (2013).

PubMed 

Google Scholar 

Morshuis, W. J. et al. Exercise cardiorespiratory function before and one year after operation for pectus excavatum. J. Thorac. Cardiovasc. Surg. 107 (6), 1403–1409 (1994).

CAS 
PubMed 

Google Scholar 

Del Frari, B. et al. The questionable benefit of pectus excavatum repair on cardiopulmonary function: a prospective study. Eur. J. Cardiothorac. Surg. 61 (1), 75–82 (2022).

Google Scholar 

Cahill, J. L., Lees, G. M. & Robertson, H. T. A summary of preoperative and postoperative cardiorespiratory performance in patients undergoing pectus excavatum and carinatum repair. J. Pediatr. Surg. 19 (4), 430–433 (1984).

CAS 
PubMed 

Google Scholar 

Kelly, R. E. Jr. et al. Multicenter study of pectus excavatum, final report: Complications, static/exercise pulmonary function, and anatomic outcomes. J. Am. Coll. Surg. 217 (6), 1080–1089 (2013).

PubMed 

Google Scholar 

Udholm, S., Maagaard, M., Pilegaard, H. & Hjortdal, V. Cardiac function in adults following minimally invasive repair of pectus excavatum. Interact. Cardiovasc. Thorac. Surg. 22 (5), 525–529 (2016).

PubMed 
PubMed Central 

Google Scholar 

Tanaka, H., Monahan, K. D. & Seals, D. R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 37 (1), 153–156 (2001).

CAS 
PubMed 

Google Scholar 

Cicone, Z. S., Holmes, C. J., Fedewa, M. V., MacDonald, H. V. & Esco, M. R. Age-Based prediction of maximal heart rate in children and adolescents: A systematic review and Meta-Analysis. Res. Q. Exerc. Sport. 90 (3), 417–428 (2019).

PubMed 

Google Scholar 

Neviere, R. et al. Cardiopulmonary response following surgical repair of pectus excavatum in adult patients. Eur. J. Cardiothorac. Surg. 40 (2), e77–82 (2011).

PubMed 

Google Scholar 

Poston, P. M. et al. The correction index: setting the standard for recommending operative repair of pectus excavatum. Ann. Thorac. Surg. 97 (4), 1176–1179 (2014). discussion 9–80.

PubMed 

Google Scholar 

Castellani, C., Windhaber, J., Schober, P. H. & Hoellwarth, M. E. Exercise performance testing in patients with pectus excavatum before and after Nuss procedure. Pediatr. Surg. Int. 26 (7), 659–663 (2010).

PubMed 

Google Scholar 

Julious, S. A. Sample sizes for clinical trials with normal data. Stat. Med. 23 (12), 1921–1986 (2004).

PubMed 

Google Scholar 

Arena, R., Myers, J. & Kaminsky, L. A. Revisiting age-predicted maximal heart rate: Can it be used as a valid measure of effort? Am. Heart J. 173, 49–56 (2016).

PubMed 

Google Scholar 

Neviere, R. & Wurtz, A. Longer term effects of closed repair of pectus excavatum on cardiopulmonary status. J. Pediatr. Surg. 48 (9), 1988–1989 (2013).

PubMed 

Google Scholar 

Gürkan, U. et al. Echocardiographic assessment of right ventricular function before and after surgery in patients with pectus excavatum and right ventricular compression. Thorac. Cardiovasc. Surg. 62 (3), 231–235 (2014).

PubMed 

Google Scholar 

Krueger, T. et al. Cardiac function assessed by transesophageal echocardiography during pectus excavatum repair. Ann. Thorac. Surg. 89 (1), 240–243 (2010).

PubMed 

Google Scholar 

Dunning, J. et al. The pectus care guidelines: Best practice consensus guidelines from the joint specialist societies SCTS/MF/CWIG/BOA/BAPS for the treatment of patients with pectus abnormalities. Eur. J. Cardiothorac. Surg. ;66(1). (2024).

Lundby, C., Montero, D. & Joyner, M. Biology of VO(2) max: Looking under the physiology lamp. Acta Physiol. (Oxf). 220 (2), 218–228 (2017).

CAS 
PubMed 

Google Scholar 

Montero, D., Diaz-Cañestro, C. & Lundby, C. Endurance training and V˙O2max: Role of maximal cardiac output and oxygen extraction. Med. Sci. Sports Exerc. 47 (10), 2024–2033 (2015).

CAS 
PubMed 

Google Scholar 

Lundby, C. & Robach, P. Performance enhancement: What are the physiological limits? Physiol. (Bethesda). 30 (4), 282–292 (2015).

CAS 

Google Scholar 

Bassett, D. R. Jr. & Howley, E. T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 32 (1), 70–84 (2000).

PubMed 

Google Scholar 

Niemeyer, M., Knaier, R. & Beneke, R. The oxygen uptake Plateau-A critical review of the frequently misunderstood phenomenon. Sports Med. 51 (9), 1815–1834 (2021).

PubMed 
PubMed Central 

Google Scholar 

Taylor, H. L., Buskirk, E. & Henschel, A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J. Appl. Physiol. 8 (1), 73–80 (1955).

CAS 
PubMed 

Google Scholar 

Midgley, A. W., McNaughton, L. R., Polman, R. & Marchant, D. Criteria for determination of maximal oxygen uptake: A brief critique and recommendations for future research. Sports Med. 37 (12), 1019–1028 (2007).

PubMed 

Google Scholar 

Glassford, R. G., Baycroft, G. H., Sedgwick, A. W. & Macnab, R. B. Comparison of maximal oxygen uptake values determined by predicted and actual methods. J. Appl. Physiol. 20 (3), 509–513 (1965).

CAS 
PubMed 

Google Scholar 

Astrand, P. O. & Saltin, B. Maximal oxygen uptake and heart rate in various types of muscular activity. J. Appl. Physiol. 16, 977–981 (1961).

CAS 
PubMed 

Google Scholar 

Wyndham, C. H., Strydom, N. B., Leary, W. P. & Williams, C. G. Studies of the maximum capacity of men for physical effort. I. A comparison of methods of assessing the maximum oxygen intake. Int. Z. Angew Physiol. 22 (4), 285–295 (1966).

CAS 
PubMed 

Google Scholar 

Millet, G. P., Vleck, V. E. & Bentley, D. J. Physiological differences between cycling and running: Lessons from triathletes. Sports Med. 39 (3), 179–206 (2009).

PubMed 

Google Scholar 

Stromme, S. B., Ingjer, F. & Meen, H. D. Assessment of maximal aerobic power in specifically trained athletes. J. Appl. Physiol. Respir Environ. Exerc. Physiol. 42 (6), 833–837 (1977).

CAS 
PubMed 

Google Scholar 

Hermansen, L., Ekblom, B. & Saltin, B. Cardiac output during submaximal and maximal treadmill and bicycle exercise. J. Appl. Physiol. 29 (1), 82–86 (1970).

CAS 
PubMed 

Google Scholar 

Hermansen, L. & Saltin, B. Oxygen uptake during maximal treadmill and bicycle exercise. J. Appl. Physiol. 26 (1), 31–37 (1969).

CAS 
PubMed 

Google Scholar 

Brink-Elfegoun, T., Holmberg, H. C., Ekblom, M. N. & Ekblom, B. Neuromuscular and circulatory adaptation during combined arm and leg exercise with different maximal work loads. Eur. J. Appl. Physiol. 101 (5), 603–611 (2007).

PubMed 

Google Scholar 

Langeskov-Christensen, M., Langeskov-Christensen, D., Overgaard, K., Møller, A. B. & Dalgas, U. Validity and reliability of VO2-max measurements in persons with multiple sclerosis. J. Neurol. Sci. 342 (1–2), 79–87 (2014).

PubMed 

Google Scholar 

Pivarnik, J. M., Dwyer, M. C. & Lauderdale, M. A. The reliability of aerobic capacity (VO2max) testing in adolescent girls. Res. Q. Exerc. Sport. 67 (3), 345–348 (1996).

CAS 
PubMed 

Google Scholar 

Day, J. R., Rossiter, H. B., Coats, E. M., Skasick, A. & Whipp, B. J. The maximally attainable VO2 during exercise in humans: The peak vs. maximum issue. J. Appl. Physiol. (1985). 95 (5), 1901–1907 (2003).

CAS 
PubMed 

Google Scholar 

Andersen, L. B. A maximal cycle exercise protocol to predict maximal oxygen uptake. Scand. J. Med. Sci. Sports. 5 (3), 143–146 (1995).

CAS 
PubMed 

Google Scholar 

Katch, V. L., Sady, S. S. & Freedson, P. Biological variability in maximum aerobic power. Med. Sci. Sports Exerc. 14 (1), 21–25 (1982).

CAS 
PubMed 

Google Scholar 

Beltz, N. M. et al. Graded exercise testing protocols for the determination of VO(2)max: Historical perspectives, progress, and future considerations. J. Sports Med. (Hindawi Publ Corp). 2016, 3968393 (2016).

PubMed 

Google Scholar 

Van Hooren, B., Souren, T. & Bongers, B. C. Accuracy of respiratory gas variables, substrate, and energy use from 15 CPET systems during simulated and human exercise. Scand. J. Med. Sci. Sports. 34 (1), e14490 (2024).

PubMed 

Google Scholar 

Vaccaro, P. & Mahon, A. Cardiorespiratory responses to endurance training in children. Sports Med. 4 (5), 352–363 (1987).

CAS 
PubMed 

Google Scholar 

Astrand, I., Astrand, P. O., Hallbäck, I. & Kilbom, A. Reduction in maximal oxygen uptake with age. J. Appl. Physiol. 35 (5), 649–654 (1973).

CAS 
PubMed 

Google Scholar 

Walsh, J., Walsh, R. & Redmond, K. Systematic review of physiological and psychological outcomes of surgery for pectus excavatum supporting commissioning of service in the UK. BMJ Open. Respir Res. ;10(1). (2023).

Casar Berazaluce, A. M. et al. The chest wall gender divide: Females have better cardiopulmonary function and exercise tolerance despite worse deformity in pectus excavatum. Pediatr. Surg. Int. 36 (11), 1281–1286 (2020).

PubMed 

Google Scholar 

Dupuis, M. et al. Impact of pectus excavatum on pulmonary function and exercise capacity in patients treated with 3D custom-made silicone implants. Ann. Chir. Plast. Esthet. 69 (1), 53–58 (2024).

CAS 
PubMed 

Google Scholar 

Jensen, K., Johansen, L. & Secher, N. H. Influence of body mass on maximal oxygen uptake: Effect of sample size. Eur. J. Appl. Physiol. 84 (3), 201–205 (2001).

CAS 
PubMed 

Google Scholar 

Haecker, F. M. & Sesia, S. B. Intraoperative use of the vacuum bell for elevating the sternum during the Nuss procedure. J. Laparoendosc. Adv. Surg. Tech. A. 22 (9), 934–936 (2012).

PubMed 

Google Scholar 

Kar, A., Baghai, M. & Hunt, I. Reshaping the evidence for surgical correction of pectus excavatum using cardiopulmonary exercise testing. J. Am. Heart Assoc. 11 (7), e025273 (2022).

PubMed 
PubMed Central 

Google Scholar 



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
claudio
  • Website

Related Posts

Caminar con un chaleco ponderado mejoró drásticamente mi habilidad aeróbica

julio 20, 2025

Mujer que cambia Fitness Face – Grady Newsource

julio 19, 2025

Cómo mantenerse al día con sus objetivos de acondicionamiento físico durante unos calurosos meses de verano

julio 19, 2025

Este entrenamiento para caminar de 30 minutos a los 52 años es cómo los entrenadores de fitness son adecuados

julio 19, 2025

Consultamos a un experto en acondicionamiento físico y aprendimos la verdad sobre las placas vibratorias para la pérdida de peso.

julio 18, 2025

Los residentes de Hillsboro se reúnen para Save Reed’s Crossing Fitness Center desde el inminente cierre

julio 18, 2025
Leave A Reply Cancel Reply

Últimas publicaciones

Los puntajes de lectura de primavera muestran ganancias significativas, casi el 71% en el nivel de grado

julio 20, 2025

Tracker de selección de segunda ronda del draft de la NFL: los Saints QB Tyler Shaff se unen a la lista en expansión de jugadores y firman el trato

julio 20, 2025

Gen Z Stare: Por qué los trabajadores jóvenes son virales con looks en blanco

julio 20, 2025

El tráfico de Everett se verá obstaculizado por un proyecto de pavimento de 14 semanas

julio 20, 2025
Sobre nosotros
Sobre nosotros

Bienvenidos a Tiempo Journal, tu fuente confiable para información actualizada sobre los temas que más te apasionan. En nuestro sitio, ofrecemos una amplia variedad de contenido sobre Deportes, Política, Turismo y Viajes, Estilo de Vida y mucho más. Nuestro compromiso es proporcionarte información de calidad, analizada desde diferentes perspectivas y en un formato accesible para todos.

Últimas publicaciones

Los puntajes de lectura de primavera muestran ganancias significativas, casi el 71% en el nivel de grado

julio 20, 2025

Tracker de selección de segunda ronda del draft de la NFL: los Saints QB Tyler Shaff se unen a la lista en expansión de jugadores y firman el trato

julio 20, 2025

Gen Z Stare: Por qué los trabajadores jóvenes son virales con looks en blanco

julio 20, 2025

Subscribe to Updates

Subscribe to our newsletter and never miss our latest news

Subscribe my Newsletter for New Posts & tips Let's stay updated!

© 2025 tiempojournal. Designed by tiempojournal.
  • Home
  • Advertise us
  • Contact us
  • DMCA
  • Política de Privacidad
  • Sobre Nosotros
  • Términos y Condiciones

Type above and press Enter to search. Press Esc to cancel.